logo
AAT Bioquest

ATTO 647N acid

Product key features

  • Ex/Em: 645/663 nm
  • Extinction Coefficient: 150,000 cm⁻¹M⁻¹
  • Robust Quantum Yield: Delivers bright fluorescence, ideal for sensitive detection across various imaging techniques
  • Exceptional Stability: Offers high photostability, thermal stability, and pH insensitivity across a broad range (2–11)
  • Ozone-Resistant: Enhanced resistance to atmospheric ozone degradation ensures reliable performance in microarray applications

Product description

ATTO 647N is a rhodamine-based fluorescent dye optimized for use in the red spectral region, with similar spectral characteristics as Cy5. It is characterized by high molar absorptivity, a strong fluorescence quantum yield, and excellent thermal and photostability. The dye is moderately hydrophilic and exhibits optimal excitation within the 625-660 nm range, making it compatible with the 647 nm line of Krypton-Ion lasers and the 650 nm line of diode lasers. ATTO 647N maintains stable fluorescence across a broad pH range (pH 2-11), supporting its application under diverse experimental conditions. Upon conjugation to a substrate, the dye becomes cationic, carrying a net positive charge of +1. Unlike cyanine dyes, ATTO 647N demonstrates enhanced resistance to atmospheric ozone degradation, which increases its reliability in microarray applications. ATTO 647N is particularly effective for high-precision applications such as single-molecule detection, super-resolution microscopy techniques (e.g., SIM and STED), flow cytometry (FACS), fluorescence in situ hybridization (FISH), and various other biological assays.

ATTO 647N acid is a non-reactive compound that can be employed as a reference standard in studies utilizing ATTO 647N conjugates. It is also suitable for use as a control in confocal microscopy, immunocytochemistry (ICC), high-content screening (HCS), flow cytometry, and live cell imaging applications. Furthermore, it can be utilized in the synthesis of activated esters and STP and can be coupled to hydrazines, hydroxylamines, or amines in aqueous solutions using water-soluble carbodiimides (e.g., EDAC). This allows for the conjugation of the dye to amino-containing molecules, such as proteins, antibodies, amine-modified oligonucleotides, and peptides.

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
ATTO 488 acid499520900000.800.220.09
ATTO 532 acid5315521150000.900.220.11
ATTO 647 acid6466661200000.200.080.04
ATTO 594 acid6026211200000.850.260.51
ATTO 514 acid510531115,0000.850.210.08
ATTO 565 acid5625891200000.900.270.12
ATTO 390 acid39047524000.900.460.09
ATTO 425 acid438484450000.900.190.17
ATTO 495 acid497525800000.20.450.37
ATTO 550 acid5535741200000.800.230.10
ATTO 590 acid5926211200000.800.390.43
ATTO 610 acid6156321500000.700.030.06
ATTO 620 acid61964112000010.510.040.06
ATTO 633 acid6296511300000.6410.040.05
ATTO 655 acid6616791250000.310.240.08
ATTO 647N DBCO6456631500000.6510.060.05
ATTO 647N TCO6456631500000.6510.060.05
ATTO 647N Tetrazine6456631500000.6510.060.05
ATTO 680 acid6796961250000.300.300.17
ATTO 700 acid6997151200000.250.260.41
Show More (11)

Citations

View all 22 citations: Citation Explorer
Enhancement of Signal-to-Background Ratio in Molecular Vibrational Signal Extraction by Stimulated Emission Depletion Mechanism
Authors: Wang, Ge and Chen, Lizhen and Zhan, Qiuqiang and Fang, Guangyou and Wang, Yisen
Journal: Advanced Photonics Research (2024): 2400078
Single-molecule enzymatic reaction dynamics and mechanisms of GPX3 and TRXh9 from Arabidopsis thaliana
Authors: Kuang, Yanmin and Guo, Xing and Guo, Aiyu and Ran, Xia and He, Yulu and Zhang, Yu and Guo, Lijun
Journal: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2020): 118778
A novel nanocomposite based on fluorescent turn-on gold nanostars for near-infrared photothermal therapy and self-theranostic caspase-3 imaging of glioblastoma tumor cell
Authors: Wang, J., Zhou, Z., Zhang, F., Xu, H., Chen, W., Jiang, T.
Journal: Colloids Surf B Biointerfaces (2018): 303-311
Cell-permeable organic fluorescent probes for live-cell long-term super-resolution imaging reveal lysosome-mitochondrion interactions
Authors: Han, Y., Li, M., Qiu, F., Zhang, M., Zhang, Y. H.
Journal: Nat Commun (2017): 1307
Field-Controlled Charge Separation in a Conductive Matrix at the Single-Molecule Level: Toward Controlling Single-Molecule Fluorescence Intermittency
Authors: Kennes, K., Dedecker, P., Hutchison, J. A., Fron, E., Uji, I. H., Hofkens, J., Van der Auweraer, M.
Journal: ACS Omega (2016): 1383-1392

References

View all 1 references: Citation Explorer
Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates
Authors: Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung CY, Chang W, Hirsch JD, Beechem JM, Haugl and RP., undefined
Journal: J Histochem Cytochem (2003): 1699
Page updated on December 17, 2024

Ordering information

Price
Unit size
Catalog Number2854
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

746.34

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.06

Correction Factor (280 nm)

0.05

Extinction coefficient (cm -1 M -1)

150000

Excitation (nm)

645

Emission (nm)

663

Quantum yield

0.651

Storage, safety and handling

Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Product Image
Product Image
Gallery Image 1
With EDAC or other equivalent activating coupling agents, fluorescent dyes, such as ATTO 647N acid, can react readily with the primary amines (R-NH<sub>2</sub>) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.