logo
AAT Bioquest

ATTO 633 Tetrazine

Product key features

  • Ex/Em: 629/651 nm
  • Extinction coefficient: 130,000 cm-1M-1
  • Reactive group: Tetrazine
  • Rapid Conjugation: Ideal for labeling TCO-modified biomolecules under copper-free conditions, providing fast reaction kinetics
  • High Quantum Yield & Stability: Delivers bright, stable fluorescence under prolonged light exposure, temperature changes, and across pH 2–11
  • Broad Applications: Suited for high-precision techniques such as single-molecule detection and super-resolution microscopy (PALM, dSTORM, STED)

Product description

ATTO 633 is a bright-red fluorescent dye, characterized by its strong absorption, high fluorescence quantum yield, and exceptional photo and thermal stability. It exhibits moderate hydrophilicity and is optimally excited within the 610-645 nm wavelength range, compatible with both the 633 nm line of the He-Ne laser and the 635 nm line of the diode laser. The dye maintains stable fluorescence over a wide pH range (2-11), allowing for its use in diverse experimental conditions. Upon conjugation to a substrate, ATTO 633 becomes cationic, carrying a net positive charge of +1. These properties make ATTO 633 particularly suitable for high-precision applications, including single-molecule detection and super-resolution microscopy techniques such as PALM, dSTORM, and STED. Additionally, it is compatible with flow cytometry (FACS), fluorescence in situ hybridization (FISH), and various other biological assays.

ATTO 633 tetrazine is particularly useful for labeling TCO-modified biomolecules under copper-free conditions. It reacts with TCO-functionalized molecules, forming a stable conjugate via a dihydropyrazine moiety. This click reaction is favored over others due to its extremely fast kinetics and higher yields under mild reaction conditions, making it a popular choice for researchers.

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
ATTO 390 Tetrazine39047524000.900.460.09
ATTO 425 Tetrazine438484450000.900.190.17
ATTO 495 Tetrazine497525800000.20.450.37
ATTO 550 Tetrazine5535741200000.800.230.10
ATTO 590 Tetrazine5926211200000.800.390.43
ATTO 610 Tetrazine6156321500000.700.030.06
ATTO 620 Tetrazine61964112000010.510.040.06
ATTO 633 acid6296511300000.6410.040.05
ATTO 633 maleimide6296511300000.6410.040.05
ATTO 633 azide6296511300000.6410.040.05
ATTO 633 alkyne6296511300000.6410.040.05
ATTO 633 DBCO6296511300000.6410.040.05
ATTO 633 TCO6296511300000.6410.040.05
ATTO 655 Tetrazine6616791250000.310.240.08
ATTO 488 Tetrazine499520900000.800.220.09
ATTO 647N Tetrazine6456631500000.6510.060.05
ATTO 680 Tetrazine6796961250000.300.300.17
ATTO 700 Tetrazine6997151200000.250.260.41
ATTO 647 Tetrazine6466661200000.200.080.04
ATTO 594 Tetrazine6026211200000.850.260.51
ATTO 532 Tetrazine5315521150000.900.220.11
Show More (12)

References

View all 21 references: Citation Explorer
Defect-Engineered Metal-Organic Frameworks as Nanocarriers for Pharmacotherapy: Insights into Intracellular Dynamics at The Single Particle Level.
Authors: Huang, Ge and Dreisler, Marcus Winther and Kæstel-Hansen, Jacob and Nielsen, Annette Juma and Zhang, Min and Hatzakis, Nikos S
Journal: Advanced materials (Deerfield Beach, Fla.) (2024): e2405898
Confocal Microscopy to Measure Three Modes of Fusion Pore Dynamics in Adrenal Chromaffin Cells.
Authors: Han, Sue and Wang, Xin and Cordero, Nicholas and Wu, Ling-Gang
Journal: Journal of visualized experiments : JoVE (2022)
Measuring Photophysical Transition Rates with Fluorescence Correlation Spectroscopy and Antibunching.
Authors: Sakhapov, Damir and Gregor, Ingo and Karedla, Narain and Enderlein, Jörg
Journal: The journal of physical chemistry letters (2022): 4823-4830
Comparing lifeact and phalloidin for super-resolution imaging of actin in fixed cells.
Authors: Mazloom-Farsibaf, Hanieh and Farzam, Farzin and Fazel, Mohamadreza and Wester, Michael J and Meddens, Marjolein B M and Lidke, Keith A
Journal: PloS one (2021): e0246138
Structural Mechanism of the Arrestin-3/JNK3 Interaction.
Authors: Park, Ji Young and Qu, Chang-Xiu and Li, Rui-Rui and Yang, Fan and Yu, Xiao and Tian, Zhao-Mei and Shen, Yue-Mao and Cai, Bo-Yang and Yun, Youngjoo and Sun, Jin-Peng and Chung, Ka Young
Journal: Structure (London, England : 1993) (2019): 1162-1170.e3
Page updated on January 22, 2025

Ordering information

Price
Unit size
Catalog Number70277
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

848.97

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.04

Correction Factor (280 nm)

0.05

Extinction coefficient (cm -1 M -1)

130000

Excitation (nm)

629

Emission (nm)

651

Quantum yield

0.641

Storage, safety and handling

Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Product Image
Product Image
Gallery Image 1