logo
AAT Bioquest

Protonex™ Red 780 acid

Protonex™ Red 780 works by changing its fluorescence intensity depending on the pH of the environment. Protonex™ Red 780 is minimally fluorescent at a basic pH and maximally fluorescent at an acidic pH. When Protonex™ Red 780 is bound to a receptor or an antibody on the cell surface, it is essentially non-fluorescent because the extracellular pH is neutral. However, when the receptor or antibody is internalized into the cell in response to a stimulus, it enters the endosomal pathway, where the pH is acidic. This causes Protonex™ Red 780 to become highly fluorescent and emit near-infrared light when excited by a red laser. By measuring the fluorescence intensity of Protonex™ Red 780, one can monitor the activation and trafficking of receptors or antibodies in live cells. Protonex™ Red 780 is especially useful in studying the activation and trafficking of G protein-coupled receptors (GPCRs), one of the most popular therapeutic drug targets. Protonex™ Red 780 can be used to label any receptor or epitope tag antibody and monitor its movement from the cell surface into acidic endosomes upon agonist stimulation. Protonex™ Red 780 might also be used to measure high-potency agonist and antagonist responses of different GPCRs in live cells.

Spectrum

Product family

References

View all 50 references: Citation Explorer
Generalization of the Ratiometric Method to Extend pH Range Measurements of the BCECF Probe.
Authors: Tafech, Alaa and Beaujean, Céline and Usson, Yves and Stéphanou, Angélique
Journal: Biomolecules (2023)
mOrange2, a Genetically Encoded, pH Sensitive Fluorescent Protein, is an Alternative to BCECF-AM to Measure Intracellular pH to Determine NHE3 and DRA Activity.
Authors: Sarker, Rafiquel and Tse, Chung Ming and Lin, Ruxian and McNamara, George and Singh, Varsha and Donowitz, Mark
Journal: Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (2022): 39-49
Energy Metabolism and Intracellular pH Alteration in Neural Spheroids Carrying Down Syndrome.
Authors: Kashirina, Alena and Gavrina, Alena and Kryukov, Emil and Elagin, Vadim and Kolesova, Yuliya and Artyuhov, Alexander and Momotyuk, Ekaterina and Abdyyev, Vepa and Meshcheryakova, Natalia and Zagaynova, Elena and Dashinimaev, Erdem and Kashina, Aleksandra
Journal: Biomedicines (2021)
Plastidial transporters KEA1 and KEA2 at the inner envelope membrane adjust stromal pH in the dark.
Authors: Aranda Sicilia, María Nieves and Sánchez Romero, María Elena and Rodríguez Rosales, María Pilar and Venema, Kees
Journal: The New phytologist (2021): 2080-2090
Effects of Diluent pH on Enrichment and Performance of Dairy Goat X/Y Sperm.
Authors: He, Qifu and Wu, Shenghui and Huang, Ming and Wang, Ying and Zhang, Kang and Kang, Jian and Zhang, Yong and Quan, Fusheng
Journal: Frontiers in cell and developmental biology (2021): 747722
Page updated on November 21, 2024

Ordering information

Price
Unit size
Catalog Number21185
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

857.18

Solvent

DMSO

Spectral properties

Excitation (nm)

748

Emission (nm)

769

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200
The pH-dependent absorbance spectra of Protonex™ Red 780.
The pH-dependent absorbance spectra of Protonex™ Red 780.
The pH-dependent absorbance spectra of Protonex™ Red 780.
The pH-dependent emission spectra of Protonex™ Red 780.