cAMP-NHS ester
Cyclic adenosine monophosphate (cAMP) is a second messenger used for intracellular signal induction. It is synthesized from adenosine triphosphate (ATP) by enzymes (g-proteins) that are attached to metabotropic receptors and become released when the receptor is activated. Cyclic AMP is involved in the regulation of glycogen, sugar, and lipid metabolism. This cAMP NHS ester is an excellent building block that can be used for developing cAMP probes and assays.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of cAMP-NHS ester to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 146.062 µL | 730.311 µL | 1.461 mL | 7.303 mL | 14.606 mL |
5 mM | 29.212 µL | 146.062 µL | 292.124 µL | 1.461 mL | 2.921 mL |
10 mM | 14.606 µL | 73.031 µL | 146.062 µL | 730.311 µL | 1.461 mL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield | Correction Factor (260 nm) | Correction Factor (280 nm) |
Cy2DIGE NHS ester | 492 | 508 | 150000 | 0.120 | 0.08 | 0.15 |
Cy3B NHS ester | 560 | 571 | 1200001 | 0.581 | 0.048 | 0.069 |
Cy3DIGE NHS ester | 555 | 569 | 1500001 | 0.151 | 0.07 | 0.073 |
Cy5DIGE NHS ester | 651 | 670 | 2500001 | 0.271, 0.42 | 0.02 | 0.03 |
CypHer5E NHS Ester | 643 | 660 | - | - | - | - |
QXY21 NHS ester [equivalent to QSY-21 NHS ester] | - | - | 890001 | - | - | 0.32 |
QXY7 NHS ester [equivalent to QSY-7 NHS ester] | - | - | 900001 | - | - | 0.22 |
XFD350 NHS Ester *Same Structure to Alexa Fluor™ 350 NHS Ester* | 343 | 441 | 19000 | - | 0.25 | 0.19 |
XFD430 NHS ester | 432 | 540 | 15,000 | - | - | 0.28 |
Show More (12) |
Citations
View all 59 citations: Citation Explorer
Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production
Authors: Koga, Y., Tsurumaki, H., Aoki-Saito, H., Sato, M., Yatomi, M., Takehara, K., Hisada, T.
Journal: Int J Mol Sci (2019): ersion="1.0" encoding="UTF-8" ?>17102.enlEndN
Authors: Koga, Y., Tsurumaki, H., Aoki-Saito, H., Sato, M., Yatomi, M., Takehara, K., Hisada, T.
Journal: Int J Mol Sci (2019): ersion="1.0" encoding="UTF-8" ?>17102.enlEndN
Making and Breaking of an Essential Poison: the Cyclases and Phosphodiesterases That Produce and Degrade the Essential Second Messenger Cyclic di-AMP in Bacteria
Authors: Commichau, F. M., Heidemann, J. L., Ficner, R., Stulke, J.
Journal: J Bacteriol (2019): se name="17102.enl" path="C:\Users\aatbi\Drop
Authors: Commichau, F. M., Heidemann, J. L., Ficner, R., Stulke, J.
Journal: J Bacteriol (2019): se name="17102.enl" path="C:\Users\aatbi\Drop
Cyclic di-AMP in host-pathogen interactions
Authors: Devaux, L., Kaminski, P. A., Trieu-Cuot, P., Firon, A.
Journal: Curr Opin Microbiol (2018): 21-28
Authors: Devaux, L., Kaminski, P. A., Trieu-Cuot, P., Firon, A.
Journal: Curr Opin Microbiol (2018): 21-28
Natural products as modulators of the cyclic-AMP pathway: evaluation and synthesis of lead compounds
Authors: Sengupta, S., Mehta, G.
Journal: Org Biomol Chem (2018): 6372-6390
Authors: Sengupta, S., Mehta, G.
Journal: Org Biomol Chem (2018): 6372-6390
Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP
Authors: Gundlach, J., Commichau, F. M., Stulke, J.
Journal: Curr Genet (2018): 191-195
Authors: Gundlach, J., Commichau, F. M., Stulke, J.
Journal: Curr Genet (2018): 191-195
Page updated on March 11, 2025