Tide Quencher™ 3WS acid [TQ3WS acid]
TQ3WS is designed to be a superior quencher to TAMRA, TF3 and Cy3. TQ3WS has (a). much stronger absorption; (b). much higher quenching efficiency; (c). good water solubility; and (d). versatile reactive forms with desired solubility for labeling oligonucleotides and peptides. Like TQ3, this TQ3WS product is used for post-labeling of thiol-modified oligonucleotides and and cysteine-containing peptides. TQ3WS has much higher water solubility than TQ3.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Quencher™ 3WS acid [TQ3WS acid] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 109.649 µL | 548.246 µL | 1.096 mL | 5.482 mL | 10.965 mL |
5 mM | 21.93 µL | 109.649 µL | 219.298 µL | 1.096 mL | 2.193 mL |
10 mM | 10.965 µL | 54.825 µL | 109.649 µL | 548.246 µL | 1.096 mL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer
Product family
Name | Extinction coefficient (cm -1 M -1) | Correction Factor (260 nm) | Correction Factor (280 nm) |
Tide Quencher™ 2WS acid [TQ2WS acid] | 48000 | 0.100 | 0.120 |
Tide Quencher™ 4WS acid [TQ4WS acid] | 900001 | 0.149 | 0.136 |
Tide Quencher™ 5WS acid [TQ5WS acid] | 130000 | 0.072 | 0.082 |
Tide Quencher™ 6WS acid [TQ6WS acid] | 130000 | 0.120 | 0.102 |
Tide Quencher™ 7WS acid [TQ7WS acid] | 140000 | 0.072 | 0.091 |
Tide Quencher™ 1 acid [TQ1 acid] | 20000 | 0.147 | 0.194 |
Tide Quencher™ 2 acid [TQ2 acid] | 21000 | 0.100 | 0.12 |
Tide Quencher™ 3 acid [TQ3 acid] | 22000 | 0.085 | 0.091 |
Tide Quencher™ 3WS maleimide [TQ3 maleimide] | 90000 | 0.186 | 0.205 |
Show More (1) |
Citations
View all 7 citations: Citation Explorer
A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16
Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Wang, Yuli and Phillips, Colleen N and Herrera, Gabriela S and Sims, Christopher E and Yeh, Jen Jen and Allbritton, Nancy L
Journal: RSC advances (2013): 9264--9272
Authors: Wang, Yuli and Phillips, Colleen N and Herrera, Gabriela S and Sims, Christopher E and Yeh, Jen Jen and Allbritton, Nancy L
Journal: RSC advances (2013): 9264--9272
References
View all 25 references: Citation Explorer
Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Time-resolved FRET method for typing polymorphic alleles of the human leukocyte antigen system by using a single DNA probe
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311
Page updated on November 21, 2024