logo
AAT Bioquest

iFluor® 594 goat anti-mouse IgG (H+L)

AAT Bioquest's iFluor® dyes are optimized for labeling proteins, in particular, antibodies. These dyes are bright, photostable and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 405, 488, 555 and 633 nm). iFluor® 594 goat anti-mouse IgG (H+L) conjugate has fluorescence excitation and emission maxima of ~592 nm and ~614 nm respectively. These spectral characteristics make them an excellent alternative to Alexa Fluor® 594 goat anti-mouse IgG (H+L) conjugate (Alexa Fluor® is the trademark of Invitrogen).

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
iFluor® 350 goat anti-mouse IgG (H+L)3454502000010.9510.830.23
iFluor® 405 goat anti-mouse IgG (H+L)4034273700010.9110.480.77
iFluor® 488 goat anti-mouse IgG (H+L)4915167500010.910.210.11
iFluor® 514 goat anti-mouse IgG (H+L)5115277500010.8310.2650.116
iFluor® 532 goat anti-mouse IgG (H+L)5375609000010.6810.260.16
iFluor® 555 goat anti-mouse IgG (H+L)55757010000010.6410.230.14
iFluor® 633 goat anti-mouse IgG (H+L)64065425000010.2910.0620.044
iFluor® 647 goat anti-mouse IgG (H+L)65667025000010.2510.030.03
iFluor® 680 goat anti-mouse IgG (H+L)68470122000010.2310.0970.094
iFluor® 700 goat anti-mouse IgG (H+L)69071322000010.2310.090.04
iFluor® 750 goat anti-mouse IgG (H+L)75777927500010.1210.0440.039
iFluor® 790 goat anti-mouse IgG (H+L)78781225000010.1310.10.09
iFluor® 350 goat anti-mouse IgG (H+L) *Cross Adsorbed*3454502000010.9510.830.23
iFluor® 405 goat anti-mouse IgG (H+L) *Cross Adsorbed*4034273700010.9110.480.77
iFluor® 488 goat anti-mouse IgG (H+L) *Cross Adsorbed*4915167500010.910.210.11
iFluor® 514 goat anti-mouse IgG (H+L) *Cross Adsorbed*5115277500010.8310.2650.116
iFluor® 532 goat anti-mouse IgG (H+L) *Cross Adsorbed*5375609000010.6810.260.16
iFluor® 555 goat anti-mouse IgG (H+L) *Cross Adsorbed*55757010000010.6410.230.14
iFluor® 633 goat anti-mouse IgG (H+L) *Cross Adsorbed*64065425000010.2910.0620.044
iFluor® 647 goat anti-mouse IgG (H+L) *Cross Adsorbed*65667025000010.2510.030.03
iFluor® 680 goat anti-mouse IgG (H+L) *Cross Adsorbed*68470122000010.2310.0970.094
iFluor® 700 goat anti-mouse IgG (H+L) *Cross Adsorbed*69071322000010.2310.090.04
iFluor® 750 goat anti-mouse IgG (H+L) *Cross Adsorbed*75777927500010.1210.0440.039
iFluor® 790 goat anti-mouse IgG (H+L) *Cross Adsorbed*78781225000010.1310.10.09
iFluor® 594 goat anti-rabbit IgG (H+L)58760320000010.5310.050.04
iFluor® 594 goat anti-rabbit IgG (H+L) *Cross Adsorbed*58760320000010.5310.050.04
iFluor® 546 goat anti-mouse IgG (H+L)54155710000010.6710.250.15
iFluor® 546 goat anti-mouse IgG (H+L) *Cross Adsorbed*54155710000010.6710.250.15
iFluor® 568 goat anti-mouse IgG (H+L)56858710000010.5710.340.15
iFluor® 568 goat anti-mouse IgG (H+L) *Cross Adsorbed*56858710000010.5710.340.15
iFluor® 800 goat anti-mouse IgG (H+L) 80182025000010.1110.030.08
iFluor® 800 goat anti-mouse IgG (H+L) *Cross Adsorbed*80182025000010.1110.030.08
iFluor® 810 goat anti-mouse IgG (H+L) 81182225000010.0510.090.15
iFluor® 810 goat anti-mouse IgG (H+L) *Cross Adsorbed*81182225000010.0510.090.15
iFluor® 820 goat anti-mouse IgG (H+L)82285025000010.110.16
iFluor® 820 goat anti-mouse IgG (H+L) *Cross Adsorbed*82285025000010.110.16
iFluor® 840 goat anti-mouse IgG (H+L)8368792000001-0.20.09
iFluor® 840 goat anti-mouse IgG (H+L) *Cross Adsorbed*8368792000001-0.20.09
iFluor® 860 goat anti-mouse IgG (H+L)85387825000010.10.14
iFluor® 860 goat anti-mouse IgG (H+L) *Cross Adsorbed*85387825000010.10.14
Show More (31)

Citations

View all 11 citations: Citation Explorer
SLC7A5 regulates tryptophan uptake and PD-L1 expression levels via the kynurenine pathway in ovarian cancer
Authors: Jiang, Ruibin and Jin, Bo and Sun, Yuting and Chen, Zhongjian and Wan, Danying and Feng, Jianguo and Ying, Lisha and Peng, Chanjuan and Gu, Linhui
Journal: Oncology Letters (2025): 1--15
Natural lung-tropic TH9 cells: a sharp weapon for established lung metastases
Authors: Chen, Tao and Qiao, Chenxiao and Yinwang, Eloy and Wang, Shengdong and Wen, Xuehuan and Feng, Yixuan and Jin, Xiangang and Li, Shuming and Xue, Yucheng and Zhou, Hao and others,
Journal: Journal for ImmunoTherapy of Cancer (2024): e009629
Effects and mechanism of action of neonatal versus adult astrocytes on neural stem cell proliferation after traumatic brain injury
Authors: Dai, Yong and Sun, Feifan and Zhu, Hui and Liu, Qianqian and Xu, Xide and Gong, Peipei and Jiang, Rui and Jin, Guohua and Qin, Jianbing and Chen, Jian and others,
Journal: Stem Cells (2019): 1344--1356
Overexpression of CXCR2 predicts poor prognosis in patients with colorectal cancer
Authors: Zhao, Jingkun and Ou, Baochi and Feng, Hao and Wang, Puxiongzhi and Yin, Shuai and Zhu, Congcong and Wang, Shenjie and Chen, Chun and Zheng, Minhua and Zong, Yaping and others,
Journal: Oncotarget (2017): 28442

References

View all 191 references: Citation Explorer
Assessment of EGFR/HER2 dimerization by FRET-FLIM utilizing Alexa-conjugated secondary antibodies in relation to targeted therapies in cancers
Authors: Waterhouse BR, Gijsen M, Barber PR, Tullis ID, Vojnovic B, Kong A.
Journal: Oncotarget (2011): 728
Antiprothrombin antibodies in a patient with secondary antiphospholipid syndrome and bleeding
Authors: Gonzalez Leon R, Garcia Hern and ez FJ, Castillo Palma MJ, Sanchez Roman J.
Journal: Med Clin (Barc) (2011): 668
Falsely elevated tacrolimus levels caused by immunoassay interference secondary to beta-galactosidase antibodies in an infected liver transplant recipient
Authors: Knorr JP, Grewal KS, Balasubramanian M, Young N, Zaki R, Khanmoradi K, Araya V, Ortiz J.
Journal: Pharmacotherapy (2010): 954
Prevalence of anti-Epstein-Barr virus antibodies in children and adolescents with secondary immunodeficiency
Authors: Buckova A., undefined
Journal: Epidemiol Mikrobiol Imunol (2010): 133
Analysis of the effectiveness of reused primary and secondary antibodies in Western blotting analysis
Authors: Boonrod K, Roth B, Leong Ngar S, Krczal G.
Journal: Anal Biochem (2010): 124
Page updated on December 17, 2024

Ordering information

Price
Unit size
200 ug
1 mg
Catalog Number
1646816741
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

~150000

Solvent

Water

Spectral properties

Absorbance (nm)

587

Correction Factor (260 nm)

0.05

Correction Factor (280 nm)

0.04

Extinction coefficient (cm -1 M -1)

2000001

Excitation (nm)

587

Emission (nm)

603

Quantum yield

0.531

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501
HeLa cells were stained with mouse anti-tubulin followed with iFluor<sup>TM</sup> 594 goat anti-mouse IgG (H+L) (red); actin filaments were stained with Phalloidin-iFluor<sup>TM</sup> 488 conjugate (green); and nuclei were stained with DAPI (blue).
HeLa cells were stained with mouse anti-tubulin followed with iFluor<sup>TM</sup> 594 goat anti-mouse IgG (H+L) (red); actin filaments were stained with Phalloidin-iFluor<sup>TM</sup> 488 conjugate (green); and nuclei were stained with DAPI (blue).
HeLa cells were stained with mouse anti-tubulin followed with iFluor<sup>TM</sup> 594 goat anti-mouse IgG (H+L) (red); actin filaments were stained with Phalloidin-iFluor<sup>TM</sup> 488 conjugate (green); and nuclei were stained with DAPI (blue).
HeLa cells&nbsp;were stained&nbsp;with (Tubulin+) or without (Tubulin-) mouse anti-tubulin and then&nbsp;visualized&nbsp;with&nbsp;iFluor® 594 goat anti-mouse IgG (Left) or with Alexa Fluor&reg; 594 goat anti-mouse IgG (Right).