logo
AAT Bioquest

ATTO 514 NHS ester

  • Ex/Em: 510/531 nm
  • Extinction coefficient: 115,000 cm-1M-1
  • Reactive group: NHS ester
  • Easy Conjugation: Efficient labeling of primary amines on proteins and ligands, amine-modified oligonucleotides
  • Superior Brightness & Stability: Provides robust quantum yield with high photostability and thermal stability
  • Excellent Hydrophilicity: Prevents aggregation and enhances signal clarity for advanced imaging and live-cell applications

Product description

ATTO 514, a hydrophilic rhodamine-based fluorophore, is known for its excellent water solubility, strong absorption, high fluorescence quantum yield, and thermal and photo-stability. It is well-suited for single-molecule detection and high-resolution microscopy techniques like PALM, dSTORM, and STED. Additionally, it finds applications in flow cytometry (FACS), fluorescence in-situ hybridization (FISH), and other scientific methodologies. ATTO 514 exhibits optimal fluorescence efficiency when excited within the 510-535 nm range, making it a match for the 514 nm line of an Argon-Ion laser. ATTO 514 NHS ester is a popular tool used to label the primary amines of proteins, peptides, and amino-modified oligonucleotides.

Example protocol

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

Protein stock solution (Solution A)
  1. Mix 100 µL of a reaction buffer (e.g., 1 M  sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900 µL of the target protein solution (e.g., antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution.

    Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M  sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.

    Note: The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.

    Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.

    Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. The final protein concentration range of 2-10 mg/mL is recommended for optimal labeling efficiency.

ATTO 514 NHS ester stock solution (Solution B)
  1. Add anhydrous DMSO into the vial of ATTO 514 NHS ester to make a 10 mM stock solution. Mix well by pipetting or vortex.

    Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in the freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.

SAMPLE EXPERIMENTAL PROTOCOL

This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with ATTO 514 NHS ester. You might need further optimization for your particular proteins.

Note: Each protein requires a distinct dye/protein ratio, which also depends on the properties of dyes. Over-labeling of a protein could detrimentally affect its binding affinity, while the protein conjugates of low dye/protein ratio give reduced sensitivity.

Run conjugation reaction
  1. Use a 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point:  Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL, and the molecular weight of the protein is ~200KD.

    Note: We recommend using a 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1, and 20:1, respectively.

  2. Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes.

Purify the conjugation

The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.

  1. Prepare Sephadex G-25 column according to the manufacture instruction.
  2. Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
  3. Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
  4. Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate.

    Note: For immediate use, the dye-protein conjugate must be diluted with staining buffer, and aliquoted for multiple uses.

    Note: For longer-term storage, the dye-protein conjugate solution needs to be concentrated or freeze-dried.

Characterize the Desired Dye-Protein Conjugate

The Degree of Substitution (DOS) is the most important factor for characterizing dye-labeled protein. Proteins of lower DOS usually have weaker fluorescence intensity, but proteins of higher DOS (e.g., DOS > 6) tend to have reduced fluorescence too. The optimal DOS for most antibodies is recommended between 2 and 10, depending on the properties of dye and protein. For effective labeling, the degree of substitution should be controlled to have 6-8 moles of ATTO 514 NHS ester to one mole of antibody. The following steps are used to determine the DOS of ATTO 514 NHS ester labeled proteins.

Measure absorption

To measure the absorption spectrum of a dye-protein conjugate, it is recommended to keep the sample concentration in the range of 1-10 µM depending on the extinction coefficient of the dye.

Read OD (absorbance) at 280 nm and dye maximum absorption (ƛmax = 510 nm for ATTO 514 NHS ester)

For most spectrophotometers, the sample (from the column fractions) needs to be diluted with de-ionized water so that the O.D. values are in the range of 0.1 to 0.9. The O.D. (absorbance) at 280 nm is the maximum absorption of protein, while 510 nm is the maximum absorption of ATTO 514 NHS ester. To obtain accurate DOS, ensure the conjugate is free of the non-conjugated dye.

Calculate DOS

You can calculate the DOS using our tool by following this link: https://www.aatbio.com/tools/degree-of-labeling-calculator

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
ATTO 488 NHS ester499520900000.800.220.09
ATTO 532 NHS ester5315521150000.900.220.11
ATTO 647 NHS ester6466661200000.200.080.04
ATTO 647N NHS ester6456631500000.6510.060.05
ATTO 594 NHS ester6026211200000.850.260.51
ATTO 565 NHS ester5625891200000.900.270.12
ATTO 390 NHS ester39047524000.900.460.09
ATTO 425 NHS ester438484450000.900.190.17
ATTO 495 NHS ester497525800000.20.450.37
ATTO 550 NHS ester5535741200000.800.230.10
ATTO 590 NHS ester5926211200000.800.390.43
ATTO 610 NHS ester6156321500000.700.030.06
ATTO 620 NHS ester61964112000010.510.040.06
ATTO 633 NHS ester6296511300000.6410.040.05
ATTO 655 NHS ester6616791250000.310.240.08
ATTO 680 NHS ester6796961250000.300.300.17
ATTO 700 NHS ester6997151200000.250.260.41
Show More (8)

References

View all 50 references: Citation Explorer
Improved enzymatic labeling of fluorescent in situ hybridization probes applied to the visualization of retained introns in cells.
Authors: Xiao, Wen and Yeom, Kyu-Hyeon and Lin, Chia-Ho and Black, Douglas L
Journal: RNA (New York, N.Y.) (2023)
Measuring Photophysical Transition Rates with Fluorescence Correlation Spectroscopy and Antibunching.
Authors: Sakhapov, Damir and Gregor, Ingo and Karedla, Narain and Enderlein, Jörg
Journal: The journal of physical chemistry letters (2022): 4823-4830
Combining Fluorescence Fluctuations and Photobleaching to Quantify Surface Density.
Authors: Sefkow-Werner, Julius and Migliorini, Elisa and Picart, Catherine and Wahyuni, Dwiria and Wang, Irène and Delon, Antoine
Journal: Analytical chemistry (2022): 6521-6528
A Model of F-actin Organization in Granuloreticulopodia in Foraminifera: Morphogenetic and Evolutionary Implications from Novel Fluorescent and Polarised Light Observations.
Authors: Goleń, Jan and Tyszka, Jarosław and Godos, Karolina and Janse, Max
Journal: Protist (2022): 125886
Fractional CO2 laser ablation leads to enhanced permeation of a fluorescent dye in healthy and mycotic nails-An imaging investigation of laser-tissue effects and their impact on ungual drug delivery.
Authors: Ortner, Vinzent Kevin and Nguyen, Nhi and Brewer, Jonathan R and Solovyeva, Vita and Haedersdal, Merete and Philipsen, Peter Alshede
Journal: Lasers in surgery and medicine (2022): 861-874
Page updated on December 17, 2024

Ordering information

Price
Unit size
Catalog Number2863
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

951.91

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.21

Correction Factor (280 nm)

0.08

Extinction coefficient (cm -1 M -1)

115,000

Excitation (nm)

510

Emission (nm)

531

Quantum yield

0.85

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Product Image
Product Image
Gallery Image 1
Fluorescent ATTO dye NHS esters (or succinimidyl esters) are the most popular tool for conjugating ATTO dyes to a peptide, protein, antibody, amino-modified oligonucleotide or nucleic acid. NHS esters react readily with the primary amines (R-NH<sub>2</sub>) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.