logo
AAT Bioquest

Tide Fluor™ 4 maleimide [TF4 maleimide] *Superior replacement for ROX and Texas Red*

TF4 is designed to be a superior fluorophore alternative to ROX and Texas Red®. TF4 has (a). stronger fluorescence intensity; (b). higher conjugation yield; and (c). longer shelf life. Additionally their fluorescence is pH-independent from pH 3 to 11. These characteristics make this new dye family a superior alternative to ROX and Texas Red®. In pairing with our Tide Quencher™ 4 (TQ4), a variety of FRET peptides and nucleotides can be developed for detecting proteases and molecular beacons with enhanced sensitivity and stability. This TF4 product is is used for post-labeling of thiol-modified oligonucleotides and peptides that contain cysteines.

Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Fluor™ 4 maleimide [TF4 maleimide] *Superior replacement for ROX and Texas Red* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM132.3 µL661.498 µL1.323 mL6.615 mL13.23 mL
5 mM26.46 µL132.3 µL264.599 µL1.323 mL2.646 mL
10 mM13.23 µL66.15 µL132.3 µL661.498 µL1.323 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum

Citations

View all 8 citations: Citation Explorer
A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Spatiotemporal imaging of small GTPases activity in live cells
Authors: Voss, Stephanie and Kr{\"u}ger, Dennis M and Koch, Oliver and Wu, Yao-Wen
Journal: Proceedings of the National Academy of Sciences (2016): 14348--14353
Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16

References

View all 25 references: Citation Explorer
Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Time-resolved FRET method for typing polymorphic alleles of the human leukocyte antigen system by using a single DNA probe
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311
Page updated on January 18, 2025

Ordering information

Price
Unit size
Catalog Number2287
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

755.86

Solvent

DMSO

Spectral properties

Correction Factor (280 nm)

0.436

Extinction coefficient (cm -1 M -1)

90000

Excitation (nm)

577

Emission (nm)

602

Quantum yield

0.771

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.