Rhod-2 AM
Example protocol
PREPARATION OF STOCK SOLUTIONS
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles
Prepare a 2 to 5 mM stock solution of Rhod-2 AM in high-quality, anhydrous DMSO.
PREPARATION OF WORKING SOLUTION
On the day of the experiment, either dissolve Rhod-2 AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature.
Prepare a 2 to 20 µM Rhod-2 AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Rhod-2 AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.
Note: The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Rhod-2 AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.
Note: If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of ReadiUse™ Probenecid products, including water-soluble, sodium salt, and stabilized solutions, can be purchased from AAT Bioquest.
SAMPLE EXPERIMENTAL PROTOCOL
Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.
- Prepare cells in growth medium overnight.
On the next day, add 1X Rhod-2 AM working solution to your cell plate.
Note: If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.
Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.
Note: Incubating the dye for longer than 1 hour can improve signal intensities in certain cell lines.
- Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
- Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a TRITC filter set or a fluorescence plate reader containing a programmable liquid handling system such as an FDSS, FLIPR, or FlexStation, at Ex/Em = 540/590 nm cutoff 570 nm.
Calculators
Common stock solution preparation
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 88.971 µL | 444.856 µL | 889.711 µL | 4.449 mL | 8.897 mL |
5 mM | 17.794 µL | 88.971 µL | 177.942 µL | 889.711 µL | 1.779 mL |
10 mM | 8.897 µL | 44.486 µL | 88.971 µL | 444.856 µL | 889.711 µL |
Molarity calculator
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Alternative formats
Product family
Name | Excitation (nm) | Emission (nm) |
Fura-2, AM *CAS 108964-32-5* | 336 | 505 |
Fura-2, AM *UltraPure Grade* *CAS 108964-32-5* | 336 | 505 |
Rhod-5N, AM | 557 | 580 |
Rhod-FF, AM | 553 | 577 |
Rhod-4™, AM | 523 | 551 |
Citations
Authors: Swift, Luther M and Roberts, Anysja and Pressman, Jenna and Guerrelli, Devon and Allen, Samuel and Haq, Kazi T and Reisz, Julie A and D’Alessandro, Angelo and Posnack, Nikki Gillum
Journal: bioRxiv (2023): 2023--05
Authors: Yang, Yuting and Wu, Jihong and Lu, Wei and Dai, Yiqin and Zhang, Youjia and Sun, Xinghuai
Journal: (2022)
Authors: Miranda, Jose G and Schleicher, Wolfgang E and Wells, Kristen L and Ramirez, David G and Landgrave, Samantha P and Benninger, Richard KP
Journal: Molecular metabolism (2022): 101430
Authors: Yoon, Jin-Young and Daneshgar, Nastaran and Chu, Yi and Chen, Biyi and Hefti, Marco and Irani, Kaikobad and Song, Long-Sheng and Brenner, Charles and Abel, E Dale and London, Barry and others,
Journal: bioRxiv (2022)
Authors: Miranda, Jose G and Schleicher, Wolfgang E and Ramirez, David G and Landgrave, Samantha P and Benninger, Richard KP
Journal: BioRXiv (2020)