Live or Dead™ Cell Viability Assay
Red/Blue Dual Fluorescence
This Live or Dead™ Cell Viability Assay Kit uses two fluorescent indicators: Cellbrite™ Red (Ex/Em = 613/631 nm) for labeling viable cells and a cell-impermeable DNA-binding dye Nuclear Blue™ DCS1 (Ex/Em = 360/450 nm) for labeling dead cells with damaged membranes. Cells grown in black-wall plates can be stained and quantified in less than two hours. The assay is more robust and accurate than the other viability assays. It can be readily adapted for a wide variety of fluorescence platforms such as microplate assays, fluorescence microscopes, and flow cytometry. The kit provides all the essential components with an optimized assay protocol. It is suitable for both proliferating and non-proliferating cells (either suspension or adherent cells).
Example protocol
AT A GLANCE
Protocol Summary
- Prepare cells with test compounds
- Add dye-working solution
- Incubate at room temperature or 37°C for 30 minutes to 1 hour
- Monitor fluorescence intensity (bottom read mode) at Ex/Em = 610/650 nm (Cutoff = 630 nm, Red) and Ex/Em = 360/450 nm (Cutoff =420 nm, Blue) or fluorescence microscope with Cy5 channel (live) and DAPI channel (dead)
Important
Thaw all the kit components at room temperature before starting the experiment.
CELL PREPARATION
For guidelines on cell sample preparation, please visit:
https://www.aatbio.com/resources/guides/cell-sample-preparation.html
PREPARATION OF WORKING SOLUTION
Add 5 µL of 200X Cellbrite™ Red (Component A) and 5 µL of 200X Nuclear Blue™ DCS1 (Component C) into 1 mL of Assay Buffer (Component B) and mix well to make dye-working solution. This dye-working solution is stable for at least 1 hour at room temperature.
Note: As the optimal staining conditions may vary depending on different cell types, it’s recommended to determine the appropriate concentration of Component A and C individually.
SAMPLE EXPERIMENTAL PROTOCOL
- Prepare cells according to the standard protocol. Note: We treated HeLa cells with staurosporine (SS) for 4 hours at 37ºC to induce cell apoptosis. See Figure 1 for details.
- Replace growth medium with 100 µL/well (96-well plate) or 25 µL/well (384-well plate) of dye-working solution.
- Incubate the dye-working solution plate at room temperature or 37°C for 30 minutes to 1 hour, protected from light.
- Wash cells with HHBS, PBS or buffer of your choice twice.
- Add 100 µL/well (96-well plate) or 25 µL/well (384-well plate) of Assay Buffer (Component B) into the cells.
- Monitor the fluorescence signal under a fluorescence microscope with Texas Red or Cy5 filter for live cells, and DAPI filter for dead cells. The fluorescence intensity can also be analyzed with a fluorescence microplate reader (bottom read mode) at Ex/Em = 610/650 nm (Cutoff = 630 nm, Red) and Ex/Em = 360/450 nm (Cutoff =420 nm, Blue).
Spectrum
Open in Advanced Spectrum Viewer
Citations
View all 21 citations: Citation Explorer
Engineering free-standing electrospun PLLCL fibers on microfluidic platform for cell alignment
Authors: Yildirim-Semerci, {\"O}z{\"u}m and Arslan-Yildiz, Ahu
Journal: Microfluidics and Nanofluidics (2024): 1--10
Authors: Yildirim-Semerci, {\"O}z{\"u}m and Arslan-Yildiz, Ahu
Journal: Microfluidics and Nanofluidics (2024): 1--10
Developing a Novel Platelet-Rich Plasma-Laden Bioadhesive Hydrogel Contact Lens for the Treatment of Ocular Surface Chemical Injuries
Authors: Soykan, Merve Nur and Altug, Burcugul and Bas, Harun and Ghorbanpoor, Hamed and Avci, Huseyin and Eroglu, Sertac and Sengel, Sultan Butun and Sariboyaci, Ayla Eker and Bagis, Sibel Gunes and Uysal, Onur and others,
Journal: Macromolecular Bioscience (2023): 2300204
Authors: Soykan, Merve Nur and Altug, Burcugul and Bas, Harun and Ghorbanpoor, Hamed and Avci, Huseyin and Eroglu, Sertac and Sengel, Sultan Butun and Sariboyaci, Ayla Eker and Bagis, Sibel Gunes and Uysal, Onur and others,
Journal: Macromolecular Bioscience (2023): 2300204
A Multifunctional Sateen Woven Dressings for Treatment of Skin Injuries
Authors: Ozel, Ceren and Apaydin, Elif and Sariboyaci, Ayla Eker and Tamayol, Ali and Avci, Huseyin
Journal: Colloids and Surfaces B: Biointerfaces (2023): 113197
Authors: Ozel, Ceren and Apaydin, Elif and Sariboyaci, Ayla Eker and Tamayol, Ali and Avci, Huseyin
Journal: Colloids and Surfaces B: Biointerfaces (2023): 113197
Ultrasound and microbubbles (USMB) potentiated doxorubicin penetration and distribution in 3D breast tumour spheroids
Authors: Misra, Rahul and Rajic, Mathew and Sathiyamoorthy, Krishnan and Karshafian, Raffi
Journal: Journal of Drug Delivery Science and Technology (2020): 102261
Authors: Misra, Rahul and Rajic, Mathew and Sathiyamoorthy, Krishnan and Karshafian, Raffi
Journal: Journal of Drug Delivery Science and Technology (2020): 102261
Functional imaging of neuronal activity of auditory cortex by using Cal-520 in anesthetized and awake mice
Authors: Li, Jingcheng and Zhang, Jianxiong and Wang, Meng and Pan, Junxia and Chen, Xiaowei and Liao, Xiang
Journal: Biomedical Optics Express (2017): 2599--2610
Authors: Li, Jingcheng and Zhang, Jianxiong and Wang, Meng and Pan, Junxia and Chen, Xiaowei and Liao, Xiang
Journal: Biomedical Optics Express (2017): 2599--2610
References
View all 84 references: Citation Explorer
Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development
Authors: Li, Deng and Xiang, Xiaocong and Yang, Fei and Xiao, Dongqin and Liu, Kang and Chen, Zhu and Zhang, Ruolan and Feng, Gang
Journal: Biochemical and Biophysical Research Communications (2017)
Authors: Li, Deng and Xiang, Xiaocong and Yang, Fei and Xiao, Dongqin and Liu, Kang and Chen, Zhu and Zhang, Ruolan and Feng, Gang
Journal: Biochemical and Biophysical Research Communications (2017)
Localized functional chemical stimulation of TE 671 cells cultured on nanoporous membrane by calcein and acetylcholine
Authors: Zibek S, Stett A, Koltay P, Hu M, Zengerle R, Nisch W, Stelzle M.
Journal: Biophys J. (2006)
Authors: Zibek S, Stett A, Koltay P, Hu M, Zengerle R, Nisch W, Stelzle M.
Journal: Biophys J. (2006)
A vaccination and challenge model using calcein marked fish
Authors: Klesius PH, Evans JJ, Shoemaker CA, Pasnik DJ.
Journal: Fish Shellfish Immunol (2006): 20
Authors: Klesius PH, Evans JJ, Shoemaker CA, Pasnik DJ.
Journal: Fish Shellfish Immunol (2006): 20
Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake
Authors: Schoonen WG, Westerink WM, de Roos JA, Debiton E.
Journal: Toxicol In Vitro (2005): 505
Authors: Schoonen WG, Westerink WM, de Roos JA, Debiton E.
Journal: Toxicol In Vitro (2005): 505
Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging
Authors: Bratosin D, Mitrofan L, Palii C, Estaquier J, Montreuil J.
Journal: Cytometry A (2005): 78
Authors: Bratosin D, Mitrofan L, Palii C, Estaquier J, Montreuil J.
Journal: Cytometry A (2005): 78
Page updated on August 5, 2024