logo
AAT Bioquest

iFluor® 647 Tetrazine

The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This has gained popularity due to its extremely fast kinetics. AAT Bioquest offers a group of tetrazine- and TCO-containing dyes for exploring various biological systems that can use this powerful click reaction. iFluor® 647 tetrazine can be readily used to label TCO-modified biological molecules for fluorescence imaging and other fluorescence-based biological applications. The conjugates prepared with iFluor® 647 dye have spectral properties almost identical to the popular Cy5 and Alexa Fluor® 647. In most cases, antibody conjugates prepared with iFluor® 647 tend to have a higher signal/background ratio than the spectrally similar dye conjugates, such as Cy5 and Alexa Fluor® 647 (Alexa Fluor® is the trademark of Invitrogen).

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)Correction Factor (656 nm)
iFluor® 647 maleimide65667025000010.2510.030.030.0793
iFluor® 647 amine65667025000010.2510.030.030.0793
iFluor® 647 hydrazide65667025000010.2510.030.030.0793
iFluor® 647 alkyne65667025000010.2510.030.030.0793
iFluor® 647 azide65667025000010.2510.030.030.0793
iFluor® 647 Styramide *Superior Replacement for Alexa Fluor 647 tyramide*65667025000010.2510.030.030.0793
iFluor® 647 Tyramide65667025000010.2510.030.030.0793
iFluor® 647 TCO65667025000010.2510.030.030.0793
iFluor® 488 Tetrazine4915167500010.910.210.11-
iFluor® 555 Tetrazine55757010000010.6410.230.14-
iFluor® 594 Tetrazine58760320000010.5310.050.04-
iFluor® 647 acid65667025000010.2510.030.030.0793
ATTO 647 Tetrazine6466661200000.200.080.04-
Show More (4)

Citations

View all 9 citations: Citation Explorer
The tandem CD33-CLL1 CAR-T as an approach to treat acute myeloid leukemia: The tandem CLL1/CD33 CAR-T to treat AML
Authors: Wang, Huiru and Feng, Shanglong and Zhu, Yanliang and Zhang, Yafeng and Zhou, Ziwei and Nian, Zhigang and Lu, Xueqin and Peng, Peng and Wu, Shu and Zhou, Li
Journal: Blood Transfusion (2024)
Digital Light Processing 3D Printing of Gyroid Scaffold with Isosorbide-Based Photopolymer for Bone Tissue Engineering
Authors: Verisqa, Fiona and Cha, Jae-Ryung and Nguyen, Linh and Kim, Hae-Won and Knowles, Jonathan C
Journal: Biomolecules (2022): 1692
Immune-regulating bimetallic metal-organic framework nanoparticles designed for cancer immunotherapy
Authors: Dai, Zan and Wang, Qiaoyun and Tang, Jie and Wu, Min and Li, Haoze and Yang, Yannan and Zhen, Xu and Yu, Chengzhong
Journal: Biomaterials (2022): 121261
Site-specific labeling and functional efficiencies of human fibroblast growth Factor-1 with a range of fluorescent Dyes in the flexible N-Terminal region and a rigid $\beta$-turn region
Authors: Mohale, Mamello and Gundampati, Ravi Kumar and Kumar, Thallapuranam Krishnaswamy Suresh and Heyes, Colin D
Journal: Analytical biochemistry (2022): 114524
SP/NK-1R Axis Promotes Perineural Invasion of Pancreatic Cancer and is Affected by lncRNA LOC389641
Authors: Ji, Tengfei and Ma, Keqiang and Wu, Hongsheng and Cao, Tiansheng
Journal: (2021)

References

View all 4 references: Citation Explorer
A Self-Evaluating Photothermal Therapeutic Nanoparticle.
Authors: Wang, Yanfang and Du, Wei and Zhang, Tong and Zhu, Yu and Ni, Yanhan and Wang, Chenchen and Sierra Raya, Fatima Maria and Zou, Liwei and Wang, Longsheng and Liang, Gaolin
Journal: ACS nano (2020)
Modulation of Mitochondriotropic Properties of Cyanine Dyes by in Organello Copper-Free Click Reaction.
Authors: Negwer, Inka and Hirsch, Markus and Kaloyanova, Stefka and Brown, Tom and Peneva, Kalina and Butt, Hans-Jürgen and Koynov, Kaloian and Helm, Mark
Journal: Chembiochem : a European journal of chemical biology (2017): 1814-1818
Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation.
Authors: Burnham-Marusich, Amanda R and Plechaty, Anna M and Berninsone, Patricia M
Journal: Electrophoresis (2014): 2621-5
Application of a Double Aza-Michael Reaction in a 'Click, Click, Cy-Click' Strategy: From Bench to Flow.
Authors: Zang, Qin and Javed, Salim and Ullah, Farman and Zhou, Aihua and Knudtson, Christopher A and Bi, Danse and Basha, Fatima Z and Organ, Michael G and Hanson, Paul R
Journal: Synthesis (2011): 2743-2750
Page updated on November 21, 2024

Ordering information

Price
Unit size
Catalog Number1019
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

1272.44

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.03

Correction Factor (280 nm)

0.03

Correction Factor (656 nm)

0.0793

Extinction coefficient (cm -1 M -1)

2500001

Excitation (nm)

656

Emission (nm)

670

Quantum yield

0.251

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501
The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This has gained popularity due to its extremely fast kinetics. iFluor® 647 tetrazine can be readily used to label tetrazine-modified biological molecules for fluorescence imaging and other fluorescence-based biochemical analysis.
The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This has gained popularity due to its extremely fast kinetics. iFluor® 647 tetrazine can be readily used to label tetrazine-modified biological molecules for fluorescence imaging and other fluorescence-based biochemical analysis.
The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This has gained popularity due to its extremely fast kinetics. iFluor® 647 tetrazine can be readily used to label tetrazine-modified biological molecules for fluorescence imaging and other fluorescence-based biochemical analysis.