ICG-OSu
Example protocol
PREPARATION OF STOCK SOLUTIONS
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles
Mix 100 µL of a reaction buffer (e.g., 1 M sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900 µL of the target protein solution (e.g., antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution.
Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.
Note: The protein should be dissolved in 1X phosphate-buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.
Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.
Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency, the final protein concentration range of 2-10 mg/mL is recommended.
Add anhydrous DMSO into the vial of ICG-OSu to make a 10 mM stock solution. Mix well by pipetting or vortex.
Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in the freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.
SAMPLE EXPERIMENTAL PROTOCOL
This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with ICG-OSu. You might need further optimization for your particular proteins.
Note: Each protein requires a distinct dye/protein ratio, which also depends on the properties of dyes. Over-labeling of a protein could detrimentally affect its binding affinity while the protein conjugates of low dye/protein ratio give reduced sensitivity.
Use a 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point: Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL and the molecular weight of the protein is ~200KD.
Note: We recommend using a 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too low or too high, determine the optimal dye/protein ratio at 5:1, 15:1, and 20:1, respectively.
- Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes.
The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.
Prepare the Sephadex G-25 column according to the manufacturer's instructions.
Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate.
Note: For immediate use, the dye-protein conjugate need be diluted with staining buffer, and aliquoted for multiple uses.
Note: For longer-term storage, the dye-protein conjugate solution needs to be concentrated or freeze-dried.
Calculators
Common stock solution preparation
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 120.769 µL | 603.843 µL | 1.208 mL | 6.038 mL | 12.077 mL |
5 mM | 24.154 µL | 120.769 µL | 241.537 µL | 1.208 mL | 2.415 mL |
10 mM | 12.077 µL | 60.384 µL | 120.769 µL | 603.843 µL | 1.208 mL |
Molarity calculator
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Correction Factor (280 nm) |
ICG-ATT [3-ICG-acyl-1,3-thiazolidine-2-thione] | 789 | 813 | 230000 | 0.076 |
ICG amine | 789 | 813 | 230000 | 0.076 |
ICG acid | 789 | 813 | 230000 | 0.076 |
ICG Maleimide | 789 | 813 | 230000 | 0.076 |
ICG azide | 789 | 813 | 230000 | 0.076 |
ICG alkyne | 789 | 813 | 230000 | 0.076 |
ICG hydrazide | 789 | 813 | 230000 | 0.076 |
Citations
Authors: Johansen, Mette L and Vincent, Jason and Rose, Marissa and Sloan, Andrew E and Brady-Kalnay, Susann M
Journal: Molecular Imaging and Biology (2023): 1--14
Authors: Gong, Lidong and Wang, Changrong and Xu, Pengcheng and Gong, Jingjing and Zhu, Chuanda and Di, Shiming and Li, Yanglonghao and Mu, Yongxu and Han, Hongbin and Zhang, Qiang and others,
Journal: ACS Applied Materials \& Interfaces (2022): 40266--40275
Authors: Garc{\'\i}a de Jal{\'o}n, Elvira and Kleinmanns, Katrin and Fosse, Vibeke and Davidson, Ben and Bj{\o}rge, Line and Haug, Bengt Erik and McCormack, Emmet
Journal: Molecular Imaging and Biology (2021): 1--12
Authors: Li, Xin and Vieweger, Mario and Guo, Peixuan
Journal: Nanoscale (2020): 16514--16525
Authors: Shi, Xutong
Journal: (2018)
References
Authors: Yuasa Y, Seike J, Yoshida T, Takechi H, Yamai H, Yamamoto Y, Furukita Y, Goto M, Minato T, Nishino T, Inoue S, Fujiwara S, Tangoku A.
Journal: Ann Surg Oncol (2012): 486
Authors: Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa DL, Huang SJ, Klancnik JM, Jr., Aizman A.
Journal: Retina (2012): 288
Authors: Mihara M, Murai N, Hayashi Y, Hara H, Iida T, Narushima M, Todokoro T, Uchida G, Yamamoto T, Koshima I.
Journal: Ann Vasc Surg (2012): 278 e1
Authors: Litvack ZN, Zada G, Laws ER, Jr.
Journal: J Neurosurg. (2012)
Authors: Rishi P, Das A, Sarate P, Rishi E.
Journal: Indian J Ophthalmol (2012): 60