logo
AAT Bioquest

ICG amine

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1001.08
SolventDMSO
Spectral properties
Correction Factor (280 nm)0.076
Extinction coefficient (cm -1 M -1)230000
Excitation (nm)789
Emission (nm)813
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Direct upgrades
iFluor® 790 amine

OverviewpdfSDSpdfProtocol


Molecular weight
1001.08
Correction Factor (280 nm)
0.076
Extinction coefficient (cm -1 M -1)
230000
Excitation (nm)
789
Emission (nm)
813
Indocyanine green (ICG) is a cyanine dye used in medical diagnostics. It is used for determining cardiac output, hepatic function, and liver blood flow, and for ophthalmic angiography. It has a peak spectral absorption close to 800 nm. These infrared frequencies penetrate retinal layers, allowing ICG angiography to image deeper patterns of circulation than fluorescein angiography. This ICG amine can be used to modify the molecules that contain a carbonyl group (such as an aldehyde or a carboxy group).

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of ICG amine to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM99.892 µL499.461 µL998.921 µL4.995 mL9.989 mL
5 mM19.978 µL99.892 µL199.784 µL998.921 µL1.998 mL
10 mM9.989 µL49.946 µL99.892 µL499.461 µL998.921 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (280 nm)0.076
Extinction coefficient (cm -1 M -1)230000
Excitation (nm)789
Emission (nm)813

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (280 nm)
ICG-ATT [3-ICG-acyl-1,3-thiazolidine-2-thione]789813230000-0.076
ICG-OSu789813230000-0.076
XFD488 amine *Same Structure to Alexa Fluor™ 488 amine*499520710000.9210.11
XFD594 amine *Same Structure to Alexa Fluor™ 594 amine*590618900000.6610.56
XFD532 amine534553810000.6110.09
XFD555 amine5535681550000.110.08
XFD568 amine579603880000.6910.46
XFD647 amine6506712700000.3310.03
XFD750 amine7527762900000.1210.04
ICG-Osu *UltraPure Grade*789813230000-0.076
Show More (1)

Images


Citations


View all 7 citations: Citation Explorer
Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker
Authors: Johansen, Mette L and Vincent, Jason and Rose, Marissa and Sloan, Andrew E and Brady-Kalnay, Susann M
Journal: Molecular Imaging and Biology (2023): 1--14
Intravenous anti-VEGF agents with RGD peptide-targeted core cross-linked star (CCS) polymers modified with indocyanine green for imaging and treatment of laser-induced choroidal neovascularization
Authors: Cai, Wenting and Chen, Qijing and Shen, Tianyi and Yang, Qian and Hu, Weinan and Zhao, Peng and Yu, Jing
Journal: Biomaterials Science (2020): 4481--4491
Assessment of Lexiscan for Blood Brain Barrier disruption to facilitate Fluorescence brain imaging
Authors: Pak, Rebecca W and Le, Hanh ND and Valentine, Heather and Thorek, Daniel and Rahmim, Arman and Wong, Dean and Kang, Jin U
Journal: (2017): ATu3B--2
Assessment of Lexiscan for Blood Brain Barrier disruption to facilitate Fluorescence brain imaging
Authors: Pak, Rebecca W and Le, Hanh and Valentine, Heather and Thorek, Daniel and Rahmim, Arman and Wong, Dean and Kang, Jin U
Journal: (2017): ATu3B--2
Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction
Authors: Zhao, Shuting and Xu, Zhaobin and Wang, Hai and Reese, Benjamin E and Gushchina, Liubov V and Jiang, Meng and Agarwal, Pranay and Xu, Jiangsheng and Zhang, Mingjun and Shen, Rulong and others, undefined
Journal: Nature Communications (2016): 13306
Single-Layer MoS2 Nanosheets with Amplified Photoacoustic Effect for Highly Sensitive Photoacoustic Imaging of Orthotopic Brain Tumors
Authors: Chen, Jingqin and Liu, Chengbo and Hu, Dehong and Wang, Feng and Wu, Haiwei and Gong, Xiaojing and Liu, Xin and Song, Liang and Sheng, Zonghai and Zheng, Hairong
Journal: Advanced Functional Materials (2016)
Deep Photoacoustic/Luminescence/Magnetic Resonance Multimodal Imaging in Living Subjects Using High-Efficiency Upconversion Nanocomposites
Authors: Liu, Yu and Kang, Ning and Lv, Jing and Zhou, Zijian and Zhao, Qingliang and Ma, Lingceng and Chen, Zhong and Ren, Lei and Nie, Liming
Journal: Advanced Materials (2016)

References


View all 193 references: Citation Explorer
Sentinel lymph node biopsy using intraoperative indocyanine green fluorescence imaging navigated with preoperative CT lymphography for superficial esophageal cancer
Authors: Yuasa Y, Seike J, Yoshida T, Takechi H, Yamai H, Yamamoto Y, Furukita Y, Goto M, Minato T, Nishino T, Inoue S, Fujiwara S, Tangoku A.
Journal: Ann Surg Oncol (2012): 486
Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study
Authors: Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa DL, Huang SJ, Klancnik JM, Jr., Aizman A.
Journal: Retina (2012): 288
Using indocyanine green fluorescent lymphography and lymphatic-venous anastomosis for cancer-related lymphedema
Authors: Mihara M, Murai N, Hayashi Y, Hara H, Iida T, Narushima M, Todokoro T, Uchida G, Yamamoto T, Koshima I.
Journal: Ann Vasc Surg (2012): 278 e1
Indocyanine green fluorescence endoscopy for visual differentiation of pituitary tumor from surrounding structures
Authors: Litvack ZN, Zada G, Laws ER, Jr.
Journal: J Neurosurg. (2012)
Synthesis and characterization of bovine serum albumin-coated nanocapsules loaded with indocyanine green as potential multifunctional nanoconstructs
Authors: Jung B, Anvari B.
Journal: Biotechnol Prog (2012): 533
Near-infrared autofluorescence and indocyanine green angiography in central serous chorioretinopathy
Authors: Lindner E, Weinberger A, Kirschkamp T, El-Shabrawi Y, Barounig A.
Journal: Ophthalmologica (2012): 34
Imaging and evaluation of corneal vascularization using fluorescein and indocyanine green angiography
Authors: Anijeet DR, Zheng Y, Tey A, Hodson M, Sueke H, Kaye SB.
Journal: Invest Ophthalmol Vis Sci (2012): 650
Indocyanine green fluorescence-guided sentinel lymph node biopsy in dermato-oncology
Authors: Stoffels I, von der Stuck H, Boy C, Poppel T, Korber N, Weindorf M, Dissemond J, Schadendorf D, Klode J.
Journal: J Dtsch Dermatol Ges (2012): 51
Establishment of novel detection system for embryonic stem cell-derived hepatocyte-like cells based on nongenetic manipulation with indocyanine green
Authors: Yoshie S, Ito J, Shirasawa S, Yokoyama T, Fujimura Y, Takeda K, Mizuguchi M, Matsumoto K, Tomotsune D, Sasaki K.
Journal: Tissue Eng Part C Methods (2012): 12
A simple and effective technique for identification of intersegmental planes by infrared thoracoscopy after transbronchial injection of indocyanine green
Authors: Sekine Y, Ko E, Oishi H, Miwa M.
Journal: J Thorac Cardiovasc Surg. (2012)