Fluo-5F, AM *Cell permeant*
Example protocol
PREPARATION OF STOCK SOLUTIONS
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles
Prepare a 2 to 5 mM stock solution of Fluo-5F AM in high-quality, anhydrous DMSO.
PREPARATION OF WORKING SOLUTION
On the day of the experiment, either dissolve Fluo-5F AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature.
Prepare a 2 to 20 µM Fluo-5F AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Fluo-5F AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.
Note: The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Fluo-5F AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.
Note: If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of ReadiUse™ Probenecid products, including water-soluble, sodium salt, and stabilized solutions, can be purchased from AAT Bioquest.
SAMPLE EXPERIMENTAL PROTOCOL
Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.
- Prepare cells in growth medium overnight.
On the next day, add 1X Fluo-5F AM working solution to your cell plate.
Note: If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.
Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.
Note: Incubating the dye for longer than 2 hours can improve signal intensities in certain cell lines.
- Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
- Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a FITC filter set or a fluorescence plate reader containing a programmable liquid handling system such as an FDSS, FLIPR, or FlexStation, at 490/525 nm cutoff 515 nm.
Calculators
Common stock solution preparation
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 90.834 µL | 454.17 µL | 908.339 µL | 4.542 mL | 9.083 mL |
5 mM | 18.167 µL | 90.834 µL | 181.668 µL | 908.339 µL | 1.817 mL |
10 mM | 9.083 µL | 45.417 µL | 90.834 µL | 454.17 µL | 908.339 µL |
Molarity calculator
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield |
Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3* | 495 | 528 | 82000 | 0.161 |
Fluo-3, AM *CAS 121714-22-5* | 506 | 515 | 86,0001 | 0.151 |
Fluo-3, AM *UltraPure grade* *CAS 121714-22-5* | 506 | 515 | 86,0001 | 0.151 |
Fluo-3, AM *Bulk package* *CAS 121714-22-5* | 506 | 515 | 86,0001 | 0.151 |
Fluo-3FF, AM *UltraPure grade* *Cell permeant* | 506 | 515 | 86,0001 | 0.151 |
Fluo-8®, AM | 495 | 516 | 23430 | 0.161 |
Fluo-8H™, AM | 495 | 516 | 23430 | 0.161 |
Fluo-8L™, AM | 495 | 516 | 23430 | 0.161 |
Fluo-8FF™, AM | 495 | 516 | 23430 | 0.161 |
Show More (1) |
Citations
Authors: Cheng, Jinbo and Jackson, Meyer B
Journal: The Journal of Physiology (2024)
Authors: Long, Wentong and Fatehi, Mohammad and Soni, Shubham and Panigrahi, Rashmi and Philippaert, Koenraad and Yu, Yi and Kelly, Rees and Boonen, Brett and Barr, Amy and Golec, Dominic and others,
Journal: The Journal of Physiology (2020): 4321--4338
Authors: Wu, Yanjiao and Xu, Xiaoli and Ma, Lunkun and Yi, Qian and Sun, Weichao and Tang, Liling
Journal: The International Journal of Biochemistry & Cell Biology (2017)
Authors: Lu, Jiang and Yao, Xue-qin and Luo, Xin and Wang, Yu and Chung, Sookja Kim and Tang, He-xin and Cheung, Chi Wai and Wang, Xian-yu and Meng, Chen and Li, Qing and others, undefined
Journal: Neural Regeneration Research (2017): 945
References
Authors: Bian T, Autry JM, Casemore D, Li J, Thomas DD, He G, Xing C.
Journal: Biochem Biophys Res Commun (2016): 206
Authors: McCarron JG, Olson ML, Chalmers S, Girkin JM.
Journal: Methods Mol Biol (2013): 239
Authors: Honsek SD, Walz C, Kafitz KW, Rose CR.
Journal: Hippocampus (2012): 29
Authors: Hoogl, undefined and TM, Kuhn B, Wang SS.
Journal: Cold Spring Harb Protoc (2011): 1228
Authors: Eaddy AC, Schnellmann RG.
Journal: Biochem Biophys Res Commun (2011): 424