logo
AAT Bioquest

FastClick™ Cy5 Azide

FastClick™ Cy5 Azide contains both the CAG moiety of FastClick (for assisting click efficiency) and Cy5 fluorophore (as the fluorescence tag) for developing Cy5-based fluorescent probes. Cy5 is one of the most widely used red fluorophores. It has the identical fluorescence spectra to Alexa Fluor 647. FastClick™ reagents have been developed by the scientists of AAT Bioquest for enhancing the yield and reaction speed of copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. They contain a copper-chelating ligand that significantly stabilizes the Cu(I) oxidation state and thus accelerates the click reaction. They do not require the use of an external copper-chelator (such as the common THPTA or BTTAA). The high concentration of copper chelators is known to have a detrimental effect on DNA/RNA, thus causing biocompatibility issues. The introduction of a copper-chelating moiety at the reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site and thus accelerates the reaction. Under extremely mild conditions the FastClick™ azides and alkynes react much faster in high yield compared to the corresponding conventional CuAAC reactions. Click chemistry was developed by K. Barry Sharpless as a robust and specific method of ligating two molecules together. Two important characteristics make click chemistry attractive for assembling biomolecules. First, click reactions are bio-orthogonal, thus the click chemistry-functionalized biomolecules would not react with the natural biomolecules that lack a clickable functional group. Second, the reactions proceed with ease under mild conditions, such as at room temperature and in aqueous media.

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
FastClick™ Cy3 Azide55556915000010.1510.070.073
FastClick™ Cy7 Azide7567792500000.30.050.036
FastClick™ XFD350 Azide34344119000-0.250.19
FastClick™ XFD488 Azide499520710000.9210.300.11
FastClick™ XFD555 Azide5535681500000.110.080.08
FastClick™ XFD647 Azide6506712390000.3310.000.03
FastClick™ XFD750 Azide7527762400000.1210.000.04

References

View all 2 references: Citation Explorer
Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.
Authors: Shabanpoor, Fazel and Gait, Michael J
Journal: Chemical communications (Cambridge, England) (2013): 10260-2
Two-strain, cell-selective protein labeling in mixed bacterial cultures.
Authors: Truong, Frank and Yoo, Tae Hyeon and Lampo, Thomas J and Tirrell, David A
Journal: Journal of the American Chemical Society (2012): 8551-6
Page updated on January 22, 2025

Ordering information

Price
Unit size
Catalog Number72702
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

869.07

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.02

Correction Factor (280 nm)

0.03

Correction Factor (482 nm)

0.009

Correction Factor (565 nm)

0.09

Extinction coefficient (cm -1 M -1)

2500001

Excitation (nm)

651

Emission (nm)

670

Quantum yield

0.271, 0.42

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
Product Image
Product Image
Gallery Image 1
The reaction (Green Bar) of FastClick Cy5 Azide with coumarin alkyne occurs under extremely mild conditions (e.g., [Azide] = 0.02 mM, [Alkyne] = 0.02 mM, [CuSO4] = 0.02 mM, [Sodium Ascorbate] = 5 mM, in 100 mM HEPES) under which the common Cy5 azide does not effectively react with the coumarin alkyne substrate.

Alternative formats