Cy5 tertrazine [Cy5 tertrazine]
The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This inverse electron demand cycloaddition reaction has gained popularity due to the potential for extremely fast cycloaddition kinetics with TCO as the dienophile. AAT Bioquest offers a group of tetrazine- and TCO-containing dyes for exploring various biological systems that can use this poweful click reaction. Cy5-tetrazine has been used to label biological molecules for fluorescence imaging and other fluorescence-based biochemical analysis. It is widely used for labeling peptides, proteins and oligos etc.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of Cy5 tertrazine [Cy5 tertrazine] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 107.054 µL | 535.269 µL | 1.071 mL | 5.353 mL | 10.705 mL |
5 mM | 21.411 µL | 107.054 µL | 214.108 µL | 1.071 mL | 2.141 mL |
10 mM | 10.705 µL | 53.527 µL | 107.054 µL | 535.269 µL | 1.071 mL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield | Correction Factor (260 nm) | Correction Factor (280 nm) | Correction Factor (482 nm) | Correction Factor (565 nm) |
Cy5 phosphoramidite | 651 | 670 | 2500001 | 0.271, 0.42 | 0.02 | 0.03 | 0.009 | 0.09 |
Cy5 tyramide | 651 | 670 | 2500001 | 0.271, 0.42 | 0.02 | 0.03 | 0.009 | 0.09 |
Cy5 tetrazine | 651 | 670 | 2500001 | 0.271, 0.42 | 0.02 | 0.03 | 0.009 | 0.09 |
Cy5 aldehyde | 651 | 670 | 2500001 | 0.271, 0.42 | 0.02 | 0.03 | 0.009 | 0.09 |
DBCO-Cy5 | 651 | 670 | 2500001 | 0.271, 0.42 | 0.02 | 0.03 | 0.009 | 0.09 |
Citations
View all 1 citations: Citation Explorer
Site-specific chemical conjugation of human Fas ligand extracellular domain using trans-cyclooctene--methyltetrazine reactions
Authors: Muraki, Michiro and Hirota, Kiyonori
Journal: BMC biotechnology (2017): 56
Authors: Muraki, Michiro and Hirota, Kiyonori
Journal: BMC biotechnology (2017): 56
References
View all 49 references: Citation Explorer
Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles
Authors: Schulze B, Schubert US.
Journal: Chem Soc Rev (2014): 2522
Authors: Schulze B, Schubert US.
Journal: Chem Soc Rev (2014): 2522
Calixarene-based chemosensors by means of click chemistry
Authors: Song M, Sun Z, Han C, Tian D, Li H, Kim JS.
Journal: Chem Asian J (2014): 2344
Authors: Song M, Sun Z, Han C, Tian D, Li H, Kim JS.
Journal: Chem Asian J (2014): 2344
Use of click-chemistry in the development of peptidomimetic enzyme inhibitors
Authors: Fabbrizzi P, Menchi G, Guarna A, Trabocchi A.
Journal: Curr Med Chem (2014): 1467
Authors: Fabbrizzi P, Menchi G, Guarna A, Trabocchi A.
Journal: Curr Med Chem (2014): 1467
Applications of copper-catalyzed click chemistry in activity-based protein profiling
Authors: Martell J, Weerapana E.
Journal: Molecules (2014): 1378
Authors: Martell J, Weerapana E.
Journal: Molecules (2014): 1378
'Click chemistry' for diagnosis: a patent review on exploitation of its emerging trends
Authors: M, undefined and hare A, Banerjee P, Bhutkar S, Hirwani R.
Journal: Expert Opin Ther Pat (2014): 1287
Authors: M, undefined and hare A, Banerjee P, Bhutkar S, Hirwani R.
Journal: Expert Opin Ther Pat (2014): 1287
Page updated on July 12, 2023