Cell Navigator® Lysosome Staining Kit *Blue Fluorescence*
Our Cell Navigator® fluorescence imaging kits are a set of fluorescence imaging tools for labeling sub-cellular organelles such as membranes, lysosomes, mitochondria and nuclei etc. The selective labeling of live cell compartments provides a powerful method for studying cellular events in a spatial and temporal context. This particular kit is designed to label lysosomes of live cells in blue fluorescence. The kit uses a proprietary lysotropic dye that selectively accumulates in lysosomes probably vial the lysosome pH gradient. The lysotropic indicator is a hydrophobic compound that easily permeates intact live cells, and trapped in lysosomes after it gets into cells. Its fluorescence is significantly enhanced upon entering lysosomes. This key feature significantly increases its selectivity for lysosomes. The labeling protocol is robust, requiring minimal hands-on time. It can be readily adapted for a wide variety of fluorescence platforms such as microplate assays, immunocytochemistry and flow cytometry. It is useful for a variety of studies, including cell adhesion, chemotaxis, multidrug resistance, cell viability, apoptosis and cytotoxicity. The kit provides all the essential components with an optimized cell-labeling protocol. It is suitable for proliferating and non-proliferating cells, and can be used for both suspension and adherent cells.
Example protocol
AT A GLANCE
Protocol summary
- Prepare cells
- Add dye working solution
- Incubate at 37°C for 30 minutes to 2 hours
- Analyze under fluorescence microscope at Ex/Em = 360/445 nm (DAPI filter set)
Important notes
Warm LysoBrite™ Blue (Component A) to room temperature.
PREPARATION OF WORKING SOLUTION
Dilute 20 µL of LysoBrite™ Blue (Component A) into 10 mL of Live Cell Staining Buffer (Component B). Protect from light. Note: 20 µL of LysoBrite™ Blue (Component A) is enough for one 96-well plate. The optimal concentration of the fluorescent lysosome indicator varies depending on the specific application. The staining conditions may be modified according to the particular cell type and the permeability of the cells or tissues to the probe.
For guidelines on cell sample preparation, please visit
https://www.aatbio.com/resources/guides/cell-sample-preparation.html
SAMPLE EXPERIMENTAL PROTOCOL
- Prepare samples and cells.
For adherent cells: Grow cells either in a black wall/clear bottom 96-well plate (100 µL/well/96-well plate) or on coverslips inside a petri dish filled with the appropriate culture medium. When cells reach the desired confluence, add equal volume (such as 100 µL/well/96-well plate) of the dye-working solution.
For suspension cells: Centrifuge the cells at 1,000 rpm for 5 minutes to obtain a cell pellet and aspirate the supernatant. Resuspend the cell pellet gently in pre-warmed growth medium, and then add equal volume of the dye-working solution. - Incubate the cells in a 37°C, 5% CO2 incubator for 30 minutes to 2 hours.
- Observe the cells using a fluorescence microscope fitted with a DAPI filter set. Note: It is recommended to increase either the labeling concentration or the incubation time to allow the dye to accumulate if the cells do not appear to be sufficiently stained. Note: Suspension cells may be attached to coverslips that have been treated with BD Cell-Tak® (BD Biosciences) and stained as adherent cells.
Product family
Citations
View all 18 citations: Citation Explorer
ISO-upregulated BECN1 specifically promotes LC3B-dependent autophagy and anticancer activity in invasive bladder cancer
Authors: Hua, Xiaohui and Xiang, Daimin and Xu, Jiheng and Zhang, Shouyue and Wu, Shuai and Tian, Zhongxian and Zhu, Junlan and Huang, Chuanshu
Journal: Translational Oncology (2025): 102178
Authors: Hua, Xiaohui and Xiang, Daimin and Xu, Jiheng and Zhang, Shouyue and Wu, Shuai and Tian, Zhongxian and Zhu, Junlan and Huang, Chuanshu
Journal: Translational Oncology (2025): 102178
Evaluation of Double Self-Immolative Linker-Based Antibody--Drug Conjugate FDA022-BB05 with Enhanced Therapeutic Potential
Authors: Zhang, Yifan and Wang, Lei and Cao, Xuemei and Song, Ruiwen and Yin, Sicheng and Cheng, Zhiyang and Li, Weinan and Shen, Keyu and Zhao, Teng and Xu, Jun and others,
Journal: Journal of Medicinal Chemistry (2024)
Authors: Zhang, Yifan and Wang, Lei and Cao, Xuemei and Song, Ruiwen and Yin, Sicheng and Cheng, Zhiyang and Li, Weinan and Shen, Keyu and Zhao, Teng and Xu, Jun and others,
Journal: Journal of Medicinal Chemistry (2024)
Biodegradable lipophilic polymeric mRNA nanoparticles for ligand-free targeting of splenic dendritic cells for cancer vaccination
Authors: Ben-Akiva, Elana and Karlsson, Johan and Hemmati, Shayan and Yu, Hongzhe and Tzeng, Stephany Y and Pardoll, Drew M and Green, Jordan J
Journal: Proceedings of the National Academy of Sciences (2023): e2301606120
Authors: Ben-Akiva, Elana and Karlsson, Johan and Hemmati, Shayan and Yu, Hongzhe and Tzeng, Stephany Y and Pardoll, Drew M and Green, Jordan J
Journal: Proceedings of the National Academy of Sciences (2023): e2301606120
Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment
Authors: Martin, Victor and Ribeiro, Isabel AC and Alves, Marta M and Gon{\c{c}}alves, L{\'\i}dia and Almeida, Ant{\'o}nio J and Grenho, Liliana and Fernandes, Maria H and Santos, Catarina F and Gomes, Pedro S and Bettencourt, Ana F
Journal: International journal of pharmaceutics (2019): 118821
Authors: Martin, Victor and Ribeiro, Isabel AC and Alves, Marta M and Gon{\c{c}}alves, L{\'\i}dia and Almeida, Ant{\'o}nio J and Grenho, Liliana and Fernandes, Maria H and Santos, Catarina F and Gomes, Pedro S and Bettencourt, Ana F
Journal: International journal of pharmaceutics (2019): 118821
New compound ChlA-F induces autophagy-dependent anti-cancer effect via upregulating Sestrin-2 in human bladder cancer
Authors: Hua, Xiaohui and Xu, Jiheng and Deng, Xu and Xu, Jiawei and Li, Jingxia and Zhu, David Q and Zhu, Junlan and Jin, Honglei and Tian, Zhongxian and Huang, Haishan and others,
Journal: Cancer letters (2018): 38--51
Authors: Hua, Xiaohui and Xu, Jiheng and Deng, Xu and Xu, Jiawei and Li, Jingxia and Zhu, David Q and Zhu, Junlan and Jin, Honglei and Tian, Zhongxian and Huang, Haishan and others,
Journal: Cancer letters (2018): 38--51
References
View all 20 references: Citation Explorer
Lectin-histochemical and -cytochemical study of periodic acid Schiff-positive lysosome granules as a histological feature of the female mouse kidney
Authors: Yabuki A, Suzuki S, Matsumoto M, Nishinakagawa H.
Journal: Histol Histopathol (2002): 1017
Authors: Yabuki A, Suzuki S, Matsumoto M, Nishinakagawa H.
Journal: Histol Histopathol (2002): 1017
Alz-50/Gallyas-positive lysosome-like intraneuronal granules in Alzheimer's disease and control brains
Authors: Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Iritani S, Tsuchiya K.
Journal: Neurosci Lett (1998): 113
Authors: Ikeda K, Akiyama H, Arai T, Kondo H, Haga C, Iritani S, Tsuchiya K.
Journal: Neurosci Lett (1998): 113
The effect of chemical agents on lysosome fusion with phagosomes and on the F-actin content in murine peritoneal macrophages
Authors: Mozhenok TP, Rpozanov Iu M, Solov'eva LV, Braun AD, Bulychev AG.
Journal: Tsitologiia (1992): 84
Authors: Mozhenok TP, Rpozanov Iu M, Solov'eva LV, Braun AD, Bulychev AG.
Journal: Tsitologiia (1992): 84
Autometallography used as a histochemical indicator of lysosome function in cultured cells
Authors: Rungby J, Danscher G, Christensen M, Ellermann-Eriksen S, Mogensen SC.
Journal: Histochemistry (1990): 109
Authors: Rungby J, Danscher G, Christensen M, Ellermann-Eriksen S, Mogensen SC.
Journal: Histochemistry (1990): 109
Identification and purification of NK cells with lysosomotropic vital stains: correlation of lysosome content with NK activity
Authors: Shau H, Dawson JR.
Journal: J Immunol (1985): 137
Authors: Shau H, Dawson JR.
Journal: J Immunol (1985): 137
Page updated on December 17, 2024