logo
AAT Bioquest

Cell Navigator® F-Actin Labeling Kit *Red Fluorescence*

Our Cell Navigator® fluorescence imaging kits are a set of fluorescence imaging tools for labeling sub-cellular organelles such as membranes, lysosomes, mitochondria and nuclei etc. The selective labeling of live cell compartments provides a powerful method for studying cellular events in a spatial and temporal context. This particular kit is designed to label F-actins of fixed cells in red fluorescence. The kit uses a red fluorescent phalloidin conjugate that is selectively bound to F-actins. This red fluorescent phalloidin conjugate is a high-affinity probe for F-actins. Used at nanomolar concentrations, phallotoxins are convenient probes for labeling, identifying and quantitating F-actins in formaldehyde-fixed and permeabilized tissue sections, cell cultures or cell-free experiments. The labeling protocol is robust, requiring minimal hands-on time. The kit provides all the essential components with an optimized staining protocol.

Example protocol

AT A GLANCE

Protocol summary

  1. Prepare samples (microplate wells)
  2. Remove the liquid from the plate
  3. Add 100 µL/well of iFluor™ 594-Phalloidin working solution
  4. Stain the cells at RT for 15 to 60 minutes
  5. Wash the cells
  6. Examine the specimen under fluorescence microscope at Ex/Em = 594/610 nm (Texas Red channel)

Important notes
Thaw all the components at room temperature before starting the experiment.

PREPARATION OF WORKING SOLUTION

Add 10 μL of iFluor™ 594-Phalloidin (Component A) to 10 mL of Labeling Buffer (Component B) to make 1X iFluor™ 594-Phalloidin working solution. Protect from light. Note: Different cell types might be stained differently. The concentration of iFluor™ 594-Phalloidin working solution should be prepared accordingly.

For guidelines on cell sample preparation, please visit
https://www.aatbio.com/resources/guides/cell-sample-preparation.html

SAMPLE EXPERIMENTAL PROTOCOL

  1. Perform formaldehyde fixation. Incubate the cells with 3.0 – 4.0% formaldehyde in PBS at room temperature for 10 – 30 minutes. Note: Avoid any methanol containing fixatives since methanol can disrupt actin during the fixation process. The preferred fixative is methanol-free formaldehyde.

  2. Rinse the fixed cells 2 – 3 times in PBS.

  3. Optional: Add 0.1% Triton X-100 in PBS into fixed cells for 3 to 5 minutes to increase permeability. Rinse the cells 2 – 3 times in PBS.

  4. Add 100 µL/well (96-well plate) of iFluor™ 594-Phalloidin working solution into the fixed cells.

  5. Stain the cells at room temperature for 15 to 60 minutes.

  6. Rinse cells gently with PBS 2 to 3 times to remove excess dye before plate sealing.

  7. Image cells using a fluorescence microscope with Texas Red channel (Ex/Em = 594/610 nm).

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
Cell Navigator® F-Actin Labeling Kit *Blue Fluorescence*3454502000010.9510.830.23
Cell Navigator® F-Actin Labeling Kit *Green Fluorescence*4915167500010.910.210.11
Cell Navigator® F-Actin Labeling Kit *Orange Fluorescence*54155710000010.6710.250.15

Citations

View all 28 citations: Citation Explorer
A functional cardiac patch promotes cardiac repair by modulating the CCR2- cardiac-resident macrophage niche and their cell crosstalk
Authors: Ding, Chengbin and Tang, Guofeng and Sun, Yan and Fu, Xiaodong and Tian, Ye and Zhan, Jiamian and Zhang, Songtao and Xing, Xianglong and Liu, Jianing and Qiu, Xiaozhong and others,
Journal: Cell Reports Medicine (2025)
Biphasic Calcium Phosphate Ceramic Scaffold Composed of Zinc Doped $\beta$-Tricalcium Phosphate and Silicon Doped Hydroxyapatite for Bone Tissue Engineering
Authors: Fan, Jiajia and Yuan, Xinyuan and Lu, Teliang and Ye, Jiandong
Journal: ACS Applied Bio Materials (2024)
Silactins and Structural Diversity of Biosilica in Sponges
Authors: Ehrlich, Hermann and Voronkina, Alona and Tabachniсk, Konstantin and Kubiak, Anita and Ereskovsky, Alexander and Jesionowski, Teofil
Journal: Biomimetics (2024): 393
Evolution of phase, morphology, physicochemical properties, and biological properties of HA ceramic with the increase of crystallinity
Authors: Zhang, Luhui and Liang, Xinzhi and Chen, Ji and Kang, Zhengyang and Ye, Jiandong and Xie, Denghui
Journal: Ceramics International (2024)
Temperature-Controlled Screening of Catechol Groups in Poly (N-Isopropylacrylamide-co-Dopamine Methacrylamide) for Cell Detachment
Authors: Yang, Liuxin and Ren, Pengfei and Wei, Dandan and Liang, Min and Xu, Li and Tao, Yinghua and Jiao, Guanhua and Zhang, Tianzhu and Zhang, Qianli
Journal: ACS Applied Polymer Materials (2024)

References

View all 42 references: Citation Explorer
Velocity distributions of single F-actin trajectories from a fluorescence image series using trajectory reconstruction and optical flow mapping
Authors: von Wegner F, Ober T, Weber C, Schurmann S, Winter R, Friedrich O, Fink RH, Vogel M.
Journal: J Biomed Opt (2008): 54018
Visualization of F-actin and G-actin equilibrium using fluorescence resonance energy transfer (FRET) in cultured cells and neurons in slices
Authors: Okamoto K, Hayashi Y.
Journal: Nat Protoc (2006): 911
The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling
Authors: Conibear PB, Malnasi-Csizmadia A, Bagshaw CR.
Journal: Biochemistry (2004): 15404
Analysis of models of F-actin using fluorescence resonance energy transfer spectroscopy
Authors: Moens PD, dos Remedios CG.
Journal: Results Probl Cell Differ (2001): 59
Fluorescence studies of the carboxyl-terminal domain of smooth muscle calponin effects of F-actin and salts
Authors: Bartegi A, Roustan C, Kassab R, Fattoum A.
Journal: Eur J Biochem (1999): 335
Page updated on February 12, 2025

Ordering information

Price
Unit size
Catalog Number22664
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Spectral properties

Absorbance (nm)

587

Correction Factor (260 nm)

0.05

Correction Factor (280 nm)

0.04

Extinction coefficient (cm -1 M -1)

2000001

Excitation (nm)

587

Emission (nm)

603

Quantum yield

0.531

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12352200

Platform

Fluorescence microscope

ExcitationTexas Red channel
EmissionTexas Red channel
Recommended plateBlack wall, clear bottom

Components

Fluorescence image of HeLa cells fixed with 4% formaldehyde then stained with Cell Navigator® F-Actin Labeling Kit *Red Fluorescence* in a Costar black 96-well plate. Cells were labeled with iFluor® 594-Phalloidin (Cat#22664, Red) and nuclei stain DAPI (Cat#17507, Blue), respectively. Cell endoplasmic reticulum (ER) was stained with ER Green™ (Cat#22635, Green) before fixation.
Fluorescence image of HeLa cells fixed with 4% formaldehyde then stained with Cell Navigator® F-Actin Labeling Kit *Red Fluorescence* in a Costar black 96-well plate. Cells were labeled with iFluor® 594-Phalloidin (Cat#22664, Red) and nuclei stain DAPI (Cat#17507, Blue), respectively. Cell endoplasmic reticulum (ER) was stained with ER Green™ (Cat#22635, Green) before fixation.
Fluorescence image of HeLa cells fixed with 4% formaldehyde then stained with Cell Navigator® F-Actin Labeling Kit *Red Fluorescence* in a Costar black 96-well plate. Cells were labeled with iFluor® 594-Phalloidin (Cat#22664, Red) and nuclei stain DAPI (Cat#17507, Blue), respectively. Cell endoplasmic reticulum (ER) was stained with ER Green™ (Cat#22635, Green) before fixation.