Cell Meter™ NIR Mitochondrion Membrane Potential Assay Kit *Optimized for Microplate Reader*
Our Cell Meter™ assay kits are a set of tools for monitoring cell viability. There are a variety of parameters that can be used for monitoring cell viability. This particular kit is designed to monitor cell apoptosis through measuring the loss of the mitochondrial membrane potential. The collapse of mitochondrial membrane potential coincides with the opening of the mitochondrial permeability transition pores, leading to the release of cytochrome C into the cytosol, which in turn triggers other downstream events in the apoptotic cascade. Our Cell Meter™ NIR Mitochondria Membrane Potential Detection Kit provides all the essential components with an optimized assay method for the detection of apoptosis in cells with the loss of mitochondrial membrane potential. This fluorometric assay is based on the detection of the mitochondrial membrane potential in cells by our proprietary cationic MitoLite NIR™ dye. In normal cells, MitoLite NIR™ accumulates primarily in mitochondria, however, in apoptotic cells, MitoLite NIR™ staining intensity decreases. Cells stained with MitoLite NIR™ can be monitored fluorimetrically at 660-680 nm with excitation of 620-640 nm. The kit can be used for screening of apoptosis activators and inhibitors. The assay can be performed in a convenient 96-well and 384-well fluorescence microtiter-plate format.
Example protocol
AT A GLANCE
Protocol summary
- Prepare cells
- Add test compounds
- Add MitoLite™ NIR working solution (100 µL/well/ 96-well plate or 25 µL/well/384-well plate)
- Incubate at 37°C, 5% CO2 incubator for 30 - 60 minutes
- Add Assay Buffer B (50 µL/well/96-well plate or 12.5 µL/well/384-well plate)
- Monitor fluorescence intensity (Bottom read mode) at Ex/Em = 640/680 nm (Cutoff = 665 nm)
Important notes
Thaw all the kit components at room temperature before starting the experiment.
PREPARATION OF WORKING SOLUTION
Add 50 µL of 200X MitoLite™ NIR (Component A) into 10 mL of Assay Buffer A (Component B) and mix well to make MitoLite™ NIR working solution. Protect from light.
For guidelines on cell sample preparation, please visit
https://www.aatbio.com/resources/guides/cell-sample-preparation.html
SAMPLE EXPERIMENTAL PROTOCOL
- Treat cells with test compounds for a desired period of time to induce apoptosis and set up parallel control experiments.
For Negative Control: Treat cells with vehicle only.
For Positive Control: Treat cells with FCCP or CCCP at 5 - 50 µM in a 37°C, 5% CO2 incubator for 15 to 30 minutes. Note: CCCP or FCCP can be added simultaneously with MitoLite™ NIR. To get the best result, titration of the CCCP or FCCP may be required for each individual cell line. - Remove the cell medium before adding MitoLite™ NIR working solution. Note: It is important to remove the cell medium before adding MitoLite™ NIR working solution.
- Add 100 µL/well/96-well plate or 25 µL/well/384-well plate of MitoLite™ NIR working solution into the cell plate.
- Incubate the plate in a 37°C, 5% CO2 incubator for 30 - 60 minutes, protected from light. Note: The appropriate incubation time depends on the individual cell type and cell concentration used. Optimize the incubation time for each experiment.
- Add 50 µL/well/96-well plate or 12.5 µL/well/384-well plate of Assay Buffer B (Component C) into the cell plate before monitoring the fluorescence signal. Note: DO NOT wash the cells after loading. For non-adherent cells, it is recommended to centrifuge cell plates at 800 rpm for 2 minutes with brake off after adding Assay Buffer B (Component C).
- Monitor the fluorescence intensity with a fluorescence microplate reader (bottom read mode) at Ex/Em = 640/680 nm (Cutoff = 665 nm) either using the endpoint mode or using the kinetic mode 10 to 30 minutes after adding Assay Buffer B (Component C).
Spectrum
Open in Advanced Spectrum Viewer
References
View all 91 references: Citation Explorer
Safranine O as a fluorescent probe for mitochondrial membrane potential studied on the single particle level and in suspension
Authors: Perevoshchikova IV, Sorochkina AI, Zorov DB, Antonenko YN.
Journal: Biochemistry (Mosc) (2009): 663
Authors: Perevoshchikova IV, Sorochkina AI, Zorov DB, Antonenko YN.
Journal: Biochemistry (Mosc) (2009): 663
Determination of high mitochondrial membrane potential in spermatozoa loaded with the mitochondrial probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) by using fluorescence-activated flow cytometry
Authors: Guthrie HD, Welch GR.
Journal: Methods Mol Biol (2008): 89
Authors: Guthrie HD, Welch GR.
Journal: Methods Mol Biol (2008): 89
The mitochondrial membrane potential and Ca2+ oscillations in smooth muscle
Authors: Chalmers S, McCarron JG.
Journal: J Cell Sci (2008): 75
Authors: Chalmers S, McCarron JG.
Journal: J Cell Sci (2008): 75
Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling
Authors: Koopman WJ, Distelmaier F, Esseling JJ, Smeitink JA, Willems PH.
Journal: Methods (2008): 304
Authors: Koopman WJ, Distelmaier F, Esseling JJ, Smeitink JA, Willems PH.
Journal: Methods (2008): 304
How DASPMI reveals mitochondrial membrane potential: fluorescence decay kinetics and steady-state anisotropy in living cells
Authors: Ramadass R, Bereiter-Hahn J.
Journal: Biophys J (2008): 4068
Authors: Ramadass R, Bereiter-Hahn J.
Journal: Biophys J (2008): 4068
Page updated on December 17, 2024