Amplite® Renilla Luciferase Reporter Gene Assay Kit *Maximized Luminescence*
Common reporter genes include beta-galactosidase, beta-glucuronidase and luciferase. The most versatile reporter gene is the firefly luciferase. Recently there is steadily increasing use of other luciferases, such as Renilla luciferase since these reporters are smaller and do not require the presence of ATP. Our Amplite® Renilla Luciferase Reporter Gene Assay Kit is designed to provide a fast and sensitive method to detect the luciferase from sea pansy (Renilla reniformis). It uses a proprietary luminogenic formulation to quantify Renilla luciferase activity in cell-based assays. Our formulation generates a luminescent product that gives strong luminescence upon interaction with Renilla luciferase. The kit provides all the essential components. It has high sensitivity and can be performed in a convenient 96-well and 384-well microtiter-plate format. The "glow-type" signal with a half-life of one hour provides a consistent signal across large number of assay plates. The assay is compatible with standard cell growth media. This kit enables the measurement of primary expression or gene expression with wild type and the synthetic hRluc genes .
Example protocol
AT A GLANCE
Protocol summary
- Prepare cell plates
- Treat cells as needed
- Remove medium from cell plates
- Add Renilla Luciferase working solution (100 µL/well for 96-well plate or 25 µL/well for 384-well plate)
- Incubate at room temperature for 5 - 10 minutes
- Monitor luminescence intensity
Important notes
Thaw all the kit components to room temperature before use. For all luminescent experiments, it is recommended to use white plates to get the best results.
PREPARATION OF WORKING SOLUTION
1. Add one volume of 100X Luciferase Substrate (Component A) to 100 volumes of Assay Buffer (Component B) to make Renilla Luciferase working solution. Note: The reconstituted Renilla Luciferase working solution is very sensitive to light, should be kept from light. In addition, it is not stable, should be prepared fresh, kept on ice and used within 2 hours.
For guidelines on cell sample preparation, please visit
https://www.aatbio.com/resources/guides/cell-sample-preparation.html
SAMPLE EXPERIMENTAL PROTOCOL
- Treat cells (or samples) with test compounds by adding 10 µL of 10X test compounds (96-well plate) or 5 µL of 5X test compounds (384-well plate) in desired compound buffer.
- Incubate the cell plate in a 5% CO2 incubator at 37°C for desired period of time, typically 4 hours to overnight.
- Remove the medium completely.
- Add 100 µL (96-well plate) or 25 µL (384-well plate) per well of Renilla Luciferase working solution.
- Incubate the plate at room temperature for 5 - 10 minutes. Protect from light.
- Monitor luminescence intensity with a luminometer.
Citations
View all 1 citations: Citation Explorer
Use of Tox21 screening data to profile PFAS bioactivities on nuclear receptors, cellular stress pathways, and cytochrome p450 enzymes
Authors: Ooka, Masato and Sakamuru, Srilatha and Zhao, Jinghua and Qu, Yanyan and Fang, Yuhong and Tao, Dingyin and Huang, Ruili and Ferguson, Stephen and Reif, David and Simeonov, Anton and others,
Journal: Journal of Hazardous Materials (2024): 134642
Authors: Ooka, Masato and Sakamuru, Srilatha and Zhao, Jinghua and Qu, Yanyan and Fang, Yuhong and Tao, Dingyin and Huang, Ruili and Ferguson, Stephen and Reif, David and Simeonov, Anton and others,
Journal: Journal of Hazardous Materials (2024): 134642
References
View all 56 references: Citation Explorer
RNA detection using peptide-inserted Renilla luciferase
Authors: Andou T, Endoh T, Mie M, Kobatake E.
Journal: Anal Bioanal Chem (2009): 661
Authors: Andou T, Endoh T, Mie M, Kobatake E.
Journal: Anal Bioanal Chem (2009): 661
The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase
Authors: Herbst KJ, Allen MD, Zhang J.
Journal: PLoS One (2009): e5642
Authors: Herbst KJ, Allen MD, Zhang J.
Journal: PLoS One (2009): e5642
Reassembly of a bioluminescent protein Renilla luciferase directed through DNA hybridization
Authors: Cissell KA, Rahimi Y, Shrestha S, Deo SK.
Journal: Bioconjug Chem (2009): 15
Authors: Cissell KA, Rahimi Y, Shrestha S, Deo SK.
Journal: Bioconjug Chem (2009): 15
Bioluminescent indicators for Ca2+ based on split Renilla luciferase complementation in living cells
Authors: Kaihara A, Umezawa Y, Furukawa T.
Journal: Anal Sci (2008): 1405
Authors: Kaihara A, Umezawa Y, Furukawa T.
Journal: Anal Sci (2008): 1405
Coelenterazine-binding protein of Renilla muelleri: cDNA cloning, overexpression, and characterization as a substrate of luciferase
Authors: Titushin MS, Markova SV, Frank LA, Malikova NP, Stepanyuk GA, Lee J, Vysotski ES.
Journal: Photochem Photobiol Sci (2008): 189
Authors: Titushin MS, Markova SV, Frank LA, Malikova NP, Stepanyuk GA, Lee J, Vysotski ES.
Journal: Photochem Photobiol Sci (2008): 189
Page updated on December 17, 2024