logo
AAT Bioquest

trFluor™ Eu maleimide *europium complex*

Many biological compounds present in cells, serum or other biological fluids are naturally fluorescent, and thus the use of conventional, prompt fluorophores leads to serious limitations in assay sensitivity due to the high background caused by the autofluorescence of the biological molecules to be assayed. The use of long-lived fluorophores combined with time-resolved detection (a delay between excitation and emission detection) minimizes prompt fluorescence interferences. Our trFluor™ Eu probes enable time-resolved fluorometry (TRF) for the assays that require high sensitivity. These trFluor™ Eu probes have large Stokes shifts and extremely long emission half-lives when compared to more traditional fluorophores such as Alexa Fluor or cyanine dyes. Compared to the other TRF compounds, our trFluor™ Eu probes have relatively high stability, high emission yield and ability to be linked to biomolecules. Moreover, our trFluor™ Eu probes are insensitive to fluorescence quenching when conjugated to biological polymers such as antibodies.

Example protocol

PREPARATION OF WORKING SOLUTION

Dye labelling solution (7mM)
Add 10 µL DMSO to the vial to make 7 mM dye labeling solution. Note: We recommend preparing fresh dye labelling solution.

SAMPLE EXPERIMENTAL PROTOCOL

Protocol for Labeling Proteins with trFluor™ Eu Maleimide:
  1. Dissolve your thiol-containing protein at concentration 1-10 mg/mL (3-10 mg is the optimal labeling concentration) using PBS buffer (20 mM, pH 7.2).
  2. Mix the trFluor™ Maleimide and protein solution at 20:1 molar ratio of dye/protein, and shake the reaction mixture at room temperature for 2-4 hours in the dark.
  3. Filter the reaction mixture through a protein spin column for 100 µg to 1 mg protein labeling reaction; or purify the conjugate using gel filtration on a properly sized Sephadex G-25 column if the reaction scale is larger than 1 mg.
  4. Collect the desired fractions for your immediate use or freeze dry them for your future use. Note: The trFluor™ conjugate need be used near neutral pH range (6.5 to 7.5). Either acidic or basic pH would reduce its fluorescence intensity. 

Protocol for Labeling Small Molecules with trFluor™ Eu Maleimide:
  1. Dissolve trFluor™ Maleimide (10 -15 mg/mL) and your thiol-contain molecule in DMSO at 1:1.2 molar ratio of dye/ thiol-contain molecule.
  2. Stir the reaction mixture at room temperature for 2-4 hours in the dark.
  3. Purify the conjugate using HPLC (ammonium acetate/water and acetonitrile, pH 7.0).
  4. Collect and pool the desired fractions.
  5. Combine and freeze-dry the pooled fractions. Note: The trFluor™ conjugate need be used near neutral pH range (6.5 to 7.5). Either acidic or basic pH would reduce its fluorescence intensity. Note: These protocols can be used as sample protovols. We recommend to modify as per needed. 

Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of trFluor™ Eu maleimide *europium complex* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM89.529 µL447.644 µL895.287 µL4.476 mL8.953 mL
5 mM17.906 µL89.529 µL179.057 µL895.287 µL1.791 mL
10 mM8.953 µL44.764 µL89.529 µL447.644 µL895.287 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Correction Factor (260 nm)Correction Factor (280 nm)
trFluor™ Tb maleimide333544-0.9420.797
trFluor™ Eu DBCO *europium complex*298617210000.9110.777

Citations

References

View all 61 references: Citation Explorer
Development of a time-resolved fluorescence resonance energy transfer assay for cyclin-dependent kinase 4 and identification of its ATP-noncompetitive inhibitors
Authors: Lo MC, Ngo R, Dai K, Li C, Liang L, Lee J, Emkey R, Eksterowicz J, Ventura M, Young SW, Xiao SH.
Journal: Anal Biochem (2012): 368
Time-Resolved Fluorescence Resonance Energy Transfer as a Versatile Tool in the Development of Homogeneous Cellular Kinase Assays
Authors: Saville L, Spais C, Mason JL, Albom MS, Murthy S, Meyer SL, Ator MA, Angeles TS, Husten J.
Journal: Assay Drug Dev Technol. (2012)
Oligomerization of the serotonin(1A) receptor in live cells: a time-resolved fluorescence anisotropy approach
Authors: Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A.
Journal: J Phys Chem B (2011): 11439
A homogeneous single-label time-resolved fluorescence cAMP assay
Authors: Martikkala E, Rozw and owicz-Jansen A, Hanninen P, Petaja-Repo U, Harma H.
Journal: J Biomol Screen (2011): 356
Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies
Authors: Gaborit N, Larbouret C, Vallaghe J, Peyrusson F, Bascoul-Mollevi C, Crapez E, Azria D, Chardes T, Poul MA, Mathis G, Bazin H, Pelegrin A.
Journal: J Biol Chem (2011): 11337
Page updated on November 21, 2024

Ordering information

Price
Unit size
Catalog Number1434
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

1116.96

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.911

Correction Factor (280 nm)

0.777

Extinction coefficient (cm -1 M -1)

21000

Excitation (nm)

298

Emission (nm)

617

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501

Platform

Fluorescence microplate reader

Excitation346 nm
Emission617 nm
Cutoff370 nm
Recommended plateSolid black
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.