Suc-LLVY-Aminoluciferin
Suc-LLVY-D-Aminolucifin is a sentive luminogenic substrate for 20S proteasome, calpains and other chymotrypsin-like proteases. Upon the protease-induced hydrolysis the non-luminescent substrate generates the luminescent D-aminoluciferin that can be easily detected with luciferase-induced luminescence. This aminoluciferin substrate is much more sensitive than the chromogenic and fluorogenic substrates. The most common form of the proteasome is known as the 26S proteasome that contains one 20S core particle structure and two 19S regulatory caps. All 20S particles consist of four stacked heptameric ring structures that are themselves composed of two different types of subunits; alpha subunits are structural in nature, whereas beta subunits are predominantly catalytic. The outer two rings in the stack consist of seven alpha subunits each, which serve as docking domains for the regulatory particles and the alpha subunits N-termini form a gate that blocks unregulated access of substrates to the interior cavity. The inner two rings each consist of seven beta subunits and contain the protease active sites that perform the proteolysis reactions.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of Suc-LLVY-Aminoluciferin to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 115.203 µL | 576.017 µL | 1.152 mL | 5.76 mL | 11.52 mL |
5 mM | 23.041 µL | 115.203 µL | 230.407 µL | 1.152 mL | 2.304 mL |
10 mM | 11.52 µL | 57.602 µL | 115.203 µL | 576.017 µL | 1.152 mL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) |
(Suc-LLVY)2R110 | 500 | 522 | 80000 |
Suc-LLVY-AMC | 341 | 441 | - |
Citations
View all 4 citations: Citation Explorer
Diabetogenic agent alloxan is a proteasome inhibitor
Authors: Zhou, Wenjuan and Wei, Lingling and Xiao, Ting and Lai, Chunyou and Peng, Min and Xu, Lingli and Luo, Xiangwei and Deng, Shaoping and Zhang, Fengxue
Journal: Biochemical and Biophysical Research Communications (2017): 400--406
Authors: Zhou, Wenjuan and Wei, Lingling and Xiao, Ting and Lai, Chunyou and Peng, Min and Xu, Lingli and Luo, Xiangwei and Deng, Shaoping and Zhang, Fengxue
Journal: Biochemical and Biophysical Research Communications (2017): 400--406
Delineation of molecular pathways involved in cardiomyopathies caused by troponin T mutations
Authors: Gilda, Jennifer E and Lai, Xianyin and Witzmann, Frank A and Gomes, Aldrin V
Journal: Molecular & Cellular Proteomics (2016): 1962--1981
Authors: Gilda, Jennifer E and Lai, Xianyin and Witzmann, Frank A and Gomes, Aldrin V
Journal: Molecular & Cellular Proteomics (2016): 1962--1981
Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts
Authors: Ghosh, Rajeshwary and Goswami, Sumanta K and Feitoza, Luis Felipe BB and Hammock, Bruce and Gomes, Aldrin V
Journal: International Journal of Cardiology (2016): 923--935
Authors: Ghosh, Rajeshwary and Goswami, Sumanta K and Feitoza, Luis Felipe BB and Hammock, Bruce and Gomes, Aldrin V
Journal: International Journal of Cardiology (2016): 923--935
Advanced-glycation-end-product-induced formation of immunoproteasomes: involvement of RAGE and Jak2/STAT1
Authors: Grimm, Stefanie and Ott, Christiane and Hörlacher, Melanie and Weber, Daniela and Höhn, Annika and Grune, Tilman
Journal: Biochemical Journal (2012): 127--139
Authors: Grimm, Stefanie and Ott, Christiane and Hörlacher, Melanie and Weber, Daniela and Höhn, Annika and Grune, Tilman
Journal: Biochemical Journal (2012): 127--139
References
View all 36 references: Citation Explorer
Alveolar extracellular 20S proteasome in patients with acute respiratory distress syndrome
Authors: Sixt SU, Adamzik M, Spyrka D, Saul B, Hakenbeck J, Wohlschlaeger J, Costabel U, Kloss A, Giesebrecht J, Dahlmann B, Peters J.
Journal: Am J Respir Crit Care Med (2009): 1098
Authors: Sixt SU, Adamzik M, Spyrka D, Saul B, Hakenbeck J, Wohlschlaeger J, Costabel U, Kloss A, Giesebrecht J, Dahlmann B, Peters J.
Journal: Am J Respir Crit Care Med (2009): 1098
Quinone reductase acts as a redox switch of the 20S yeast proteasome
Authors: Sollner S, Schober M, Wagner A, Prem A, Lorkova L, Palfey BA, Groll M, Macheroux P.
Journal: EMBO Rep (2009): 65
Authors: Sollner S, Schober M, Wagner A, Prem A, Lorkova L, Palfey BA, Groll M, Macheroux P.
Journal: EMBO Rep (2009): 65
Comparative expression analysis and characterization of 20S proteasomes in human intestinal tissues: The proteasome pattern as diagnostic tool for IBD patients
Authors: Visekruna A, Joeris T, Schmidt N, Lawrenz M, Ritz JP, Buhr HJ, Steinhoff U.
Journal: Inflamm Bowel Dis (2009): 526
Authors: Visekruna A, Joeris T, Schmidt N, Lawrenz M, Ritz JP, Buhr HJ, Steinhoff U.
Journal: Inflamm Bowel Dis (2009): 526
Enzymatic properties of the 20S proteasome in wheat endosperm and its biochemical characteristics after seed imbibition
Authors: Shi C, Rui Q, Xu LL.
Journal: Plant Biol (Stuttg) (2009): 849
Authors: Shi C, Rui Q, Xu LL.
Journal: Plant Biol (Stuttg) (2009): 849
Toward a full characterization of the human 20S proteasome subunits and their isoforms by a combination of proteomic approaches
Authors: Uttenweiler-Joseph S, Claverol S, Sylvius L, Bousquet-Dubouch MP, Burlet-Schiltz O, Monsarrat B.
Journal: Methods Mol Biol (2008): 111
Authors: Uttenweiler-Joseph S, Claverol S, Sylvius L, Bousquet-Dubouch MP, Burlet-Schiltz O, Monsarrat B.
Journal: Methods Mol Biol (2008): 111
Page updated on January 18, 2025