mFluor™ Blue 630 SE
Example protocol
PREPARATION OF STOCK SOLUTIONS
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles
Mix 100 µL of a reaction buffer (e.g., 1 M sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900 µL of the target protein solution (e.g. antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution.
Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.
Note: The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.
Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.
Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency the final protein concentration range of 2-10 mg/mL is recommended.
Add anhydrous DMSO into the vial of mFluor™ Blue 630 SE to make a 10 mM stock solution. Mix well by pipetting or vortex.
Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.
SAMPLE EXPERIMENTAL PROTOCOL
This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with mFluor™ Blue 630 SE. You might need further optimization for your particular proteins.
Note: Each protein requires distinct dye/protein ratio, which also depends on the properties of dyes. Over labeling of a protein could detrimentally affects its binding affinity while the protein conjugates of low dye/protein ratio gives reduced sensitivity.
Use 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point: Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL and the molecular weight of the protein is ~200KD.
Note: We recommend to use 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1 and 20:1 respectively.
- Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes.
The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.
- Prepare Sephadex G-25 column according to the manufacture instruction.
- Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
- Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate.
Note: For immediate use, the dye-protein conjugate need be diluted with staining buffer, and aliquoted for multiple uses.
Note: For longer term storage, dye-protein conjugate solution need be concentrated or freeze dried.
Spectrum
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) |
mFluor™ Green 630 SE | 537 | 657 | 510001 |
mFluor™ Yellow 630 SE | 570 | 632 | 1100001 |
Citations
Authors: Lu, Ri and Ang, Yan Shan and Cheung, Ka-Wai and Quek, Kai Yun and Sin, Wei-Xiang and Lee, Elizabeth and Lim, Shir Lynn and Yung, Lin-Yue Lanry and Birnbaum, Michael E and Han, Jongyoon and others,
Journal: Advanced Science : 2309920
References
Authors: Melsen, Janine E and van Ostaijen-Ten Dam, Monique M and Lankester, Arjan C and Schilham, Marco W and van den Akker, Erik B
Journal: Journal of immunology (Baltimore, Md. : 1950) (2020)
Authors: Ferrer-Font, Laura and Mayer, Johannes U and Old, Samuel and Hermans, Ian F and Irish, Jonathan and Price, Kylie M
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2020)
Authors: Kjerulff, Bertram and Petersen, Mikkel Steen and Rodrigues, Candida Medina and da Silva Té, David and Christiansen, Mette and Erikstrup, Christian and Hønge, Bo Langhoff
Journal: Immunobiology (2020): 151878
Authors: Parks, David R
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2020)
Authors: Ferrer-Font, Laura and Mehta, Palak and Harmos, Phoebe and Schmidt, Alfonso J and Chappell, Sally and Price, Kylie M and Hermans, Ian F and Ronchese, Franca and le Gros, Graham and Mayer, Johannes U
Journal: eLife (2020)