logo
AAT Bioquest

iFluor® 720 maleimide

AAT Bioquest's iFluor® dyes are optimized for labeling proteins, particularly antibodies. These dyes are bright, photostable, and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 405, 488, 555, and 633 nm). iFluor® 720 dyes have fluorescence excitation and emission maxima of ~716 nm and ~740 nm respectively. These spectral characteristics make them a unique color for fluorescence imaging and flow cytometry applications. iFluor® 720 is an excellent acceptor dye for preparing tandem colors with APC and PE. These iFluor® 720 tandem colors offer a set of unique color profiles for spectral flow cytometry. Compared to Alexa Fluor® 700 tandems, iFluor® 720 tandems have improved photostability. iFluor® 720 maleimide is a thiol-reactive form used to conjugate with thiol-containing molecules such as reduced antibodies, thiol-modified oligos, and peptides.

Example protocol

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

iFluor® 720 maleimide Stock Solution (Solution B)
  1. Add anhydrous DMSO into the vial of iFluor® 720 maleimide to make a 10 mM stock solution. Mix well by pipetting or vortex.

    Note: For optimal results, prepare the dye stock solution (Solution B) before starting the conjugation process. Remember to use it promptly, as extended storage of the dye stock solution may reduce its reactivity. Solution B can be stored in the freezer for up to 4 weeks, protected from light and moisture. Avoid freeze-thaw cycles.

Protein Stock Solution (Solution A)
  1. Mix 100 µL of a reaction buffer (e.g., 100 mM MES buffer with pH ~6.0) with 900 µL of the target protein solution (e.g. antibody, protein concentration >2 mg/mL if possible) to give a 1 mL protein labeling stock solution.

    Note: The pH of the protein labeling stock solution solution (Solution A) should be 6.5 ± 0.5.

    Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or other proteins will not be labeled well.

    Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency, it is recommended that the final protein concentration range between 2-10 mg/mL.

  2. Optional. If your protein does not already contain a free cysteine, it is necessary to treat it with either DTT or TCEP to generate a thiol group. This process is used to convert a disulfide bond into two free thiol groups. If DTT is used, it is important to remove any excess free DTT by dialysis or gel filtration prior to conjugating a dye maleimide to the protein. Below is a sample protocol for generating a free thiol group:

    1. Prepare a fresh solution of 1 M DTT (15.4 mg/100 µL) in distilled water.
    2. To make an IgG solution in 20 mM DTT, add 20 µL of DTT stock per ml of IgG solution while mixing. Let the solution stand at room temperature for 30 minutes without additional mixing (to minimize the reoxidation of cysteines to cystines).
    3. Pass the reduced IgG over a filtration column pre-equilibrated with "Exchange Buffer". Collect 0.25 mL fractions off the column.
    4. Determine the protein concentrations and pool the fractions with the majority of the IgG. This can be done either spectrophotometrically or colorimetrically.
    5. Carry out the conjugation as soon as possible after this step (see Sample Experiment Protocol).

      Note: For the best results, IgG solutions should be >4 mg/mL. If the antibody is less than 2 mg/mL, it should be concentrated. Include an extra 10% for losses on the buffer exchange column.

      Note: The reduction can be carried out in almost any buffer from pH 7 to 7.5, e.g., MES, phosphate, or TRIS buffers.

      Note: Steps 3 and 4 can be replaced by dialysis.

SAMPLE EXPERIMENTAL PROTOCOL

This labeling protocol was developed for the labeling of goat anti-mouse IgG with iFluor® 720 maleimide. Further optimization may be required for your specific proteins.

Note: Each protein requires a distinct dye/protein ratio, which also depends on the properties of dyes. Over-labeling of a protein could detrimentally affect its binding affinity, while the protein conjugates of low dye/protein ratio give reduced sensitivity.

Run Conjugation Reaction
  1. Use a 10:1 molar ratio of Solution B (dye):Solution A (protein) as the starting point: Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) to the vial of the protein solution (95 µL of Solution A) with effective shaking. The protein concentration is ~0.05 mM, assuming the protein concentration is 10 mg/mL and the protein molecular weight is ~200KD.

    Note: We recommend using a 10:1 molar ratio of Solution B (dye) to Solution A (protein). If the ratio is too low or too high, determine the optimal dye/protein ratio at 5:1, 15:1, and 20:1, respectively.

  2. Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes.

Purify the Conjugation

The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.

  1. Prepare the Sephadex G-25 column according to the manufacturer's instructions.

  2. Load the reaction mixture (from the "Run Conjugation Reaction" section) to the top of the Sephadex G-25 column.

  3. Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.

  4. Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate.

    Note: For immediate use, the dye-protein conjugate should be diluted with staining buffer and aliquoted for multiple uses.

    Note: For longer-term storage, the dye-protein conjugate solution needs to be concentrated or freeze-dried.

Characterize the Desired Dye-Protein conjugate

The Degree of Substitution (DOS) is the most important factor for characterizing dye-labeled protein. Proteins of lower DOS usually have weaker fluorescence intensity, but proteins of higher DOS tend to have reduced fluorescence too. The optimal DOS for most antibodies is recommended between 2 and 10 depending on the properties of dye and protein. For effective labeling, the degree of substitution should be controlled to have 5-8 moles of iFluor® 720 maleimide to one mole of antibody. The following steps are used to determine the DOS of iFluor® 720 maleimide-labeled proteins.

Measure Absorption

To measure the absorption spectrum of a dye-protein conjugate, it is recommended to keep the sample concentration in the range of 1-10 µM depending on the extinction coefficient of the dye.

Read OD (absorbance) at 280 nm and dye maximum absorption (ƛmax = 716 nm for iFluor® 720 dyes)

For most spectrophotometers, the sample (from the column fractions) needs to be diluted with de-ionized water so that the OD values are in the range of 0.1 to 0.9. The O.D. (absorbance) at 280 nm is the maximum absorption of protein while 716 nm is the maximum absorption of iFluor® 720 maleimide. To obtain accurate DOS, make sure that the conjugate is free of the non-conjugated dye.

Calculate DOS

You can calculate DOS using our tool by following this link:

https://www.aatbio.com/tools/degree-of-labeling-calculator

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
iFluor® 350 maleimide3454502000010.9510.830.23
iFluor® 488 maleimide4915167500010.910.210.11
iFluor® 555 maleimide55757010000010.6410.230.14
iFluor® 647 maleimide65667025000010.2510.030.03
iFluor® 680 maleimide68470122000010.2310.0970.094
iFluor® 700 maleimide69071322000010.2310.090.04
iFluor® 750 maleimide75777927500010.1210.0440.039
iFluor® 790 maleimide78781225000010.1310.10.09
iFluor® 800 maleimide80182025000010.1110.030.08
iFluor® 810 maleimide81182225000010.0510.090.15
iFluor® 820 maleimide82285025000010.110.16
iFluor® 860 maleimide85387825000010.10.14
iFluor® 532 maleimide5375609000010.6810.260.16
iFluor® 594 maleimide58760320000010.5310.050.04
iFluor® 405 maleimide4034273700010.9110.480.77
iFluor® 430 maleimide4334984000010.7810.680.3
iFluor® 568 maleimide56858710000010.5710.340.15
iFluor® 633 maleimide64065425000010.2910.0620.044
iFluor® 450 maleimide4515024000010.8210.450.27
iFluor® 460 maleimide468493800001~0.810.980.46
iFluor® 665 maleimide667692110,00010.2210.120.09
iFluor® 546 maleimide54155710000010.6710.250.15
iFluor® 840 maleimide8368792000001-0.20.09
iFluor® 770 maleimide77779725000010.160.090.08
iFluor® 780 maleimide78480825000010.1610.130.12
iFluor® 830 maleimide830867----
iFluor® 514 maleimide5115277500010.8310.2650.116
iFluor® 660 maleimide66367825000010.2610.070.08
iFluor® 670 maleimide67168220000010.5510.030.033
iFluor® 560 maleimide56057112000010.5710.04820.069
Show More (21)

References

View all 8 references: Citation Explorer
Multiplexed non-invasive tumor imaging of glucose metabolism and receptor-ligand engagement using dark quencher FRET acceptor.
Authors: Rudkouskaya, Alena and Sinsuebphon, Nattawut and Ochoa, Marien and Chen, Sez-Jade and Mazurkiewicz, Joseph E and Intes, Xavier and Barroso, Margarida
Journal: Theranostics (2020): 10309-10325
Performance of optoacoustic and fluorescence imaging in detecting deep-seated fluorescent agents.
Authors: Chen, Zhenyue and Deán-Ben, Xosé Luís and Gottschalk, Sven and Razansky, Daniel
Journal: Biomedical optics express (2018): 2229-2239
An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.
Authors: Samanta, Anirban and Walper, Scott A and Susumu, Kimihiro and Dwyer, Chris L and Medintz, Igor L
Journal: Nanoscale (2015): 7603-14
Multicolor detection of rare tumor cells in blood using a novel flow cytometry-based system.
Authors: Watanabe, Masaru and Uehara, Yuri and Yamashita, Namiko and Fujimura, Yuu and Nishio, Kaori and Sawada, Takeshi and Takeda, Kazuo and Koizumi, Fumiaki and Koh, Yasuhiro
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2014): 206-13
Noninvasive and quantitative assessment of in vivo fetomaternal interface angiogenesis using RGD-based fluorescence.
Authors: Keramidas, M and Lavaud, J and Sergent, F and Hoffmann, P and Brouillet, S and Feige, J-J and Coll, J-L and Alfaidy, N
Journal: BioMed research international (2014): 309082
Page updated on January 18, 2025

Ordering information

Price
Unit size
Catalog Number1069
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

1038.09

Solvent

DMSO

Spectral properties

Absorbance (nm)

714

Correction Factor (260 nm)

0.15

Correction Factor (280 nm)

0.13

Extinction coefficient (cm -1 M -1)

2400001

Excitation (nm)

716

Emission (nm)

740

Quantum yield

0.141

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Flow cytometry analysis of whole blood cells stained with CD8-PerCP-iFluor®720 conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the B12-A channel.
Flow cytometry analysis of whole blood cells stained with CD8-PerCP-iFluor®720 conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the B12-A channel.
Flow cytometry analysis of whole blood cells stained with CD8-PerCP-iFluor®720 conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the B12-A channel.
Gallery Image 2