logo
AAT Bioquest

iFluor® 568 Tyramide

For many immunohistochemical (IHC) applications, traditional enzymatic amplification procedures are sufficient for achieving adequate antigen detection. However, several factors limit their sensitivity and utility. Tyramide signal amplification (TSA) has proven to be a particularly versatile and powerful enzyme amplification technique with improved assay sensitivity. TSA is based on the ability of HRP, in the presence of low concentrations of hydrogen peroxide, to convert labeled tyramine-containing substrate into an oxidized, highly reactive free radical that can covalently bind to tyrosine residues at or near the HRP. To achieve maximal IHC detection, tyramine is prelabeled with a fluorophore. The signal amplification conferred by the turnover of multiple tyramide substrates per peroxidase label results in the ability to detect low-abundance targets with ultrasensitive precision and reduces the amount of antibodies and hybridization probes needed. In IHC applications, this method can also enhance sensitivity in cases where the primary antibody dilution needs to be increased to reduce nonspecific background signals or overcome weak immunolabeling due to suboptimal fixation procedures or low levels of target expression. The iFluor® 568 tyramide contains the bright iFluor® 568 that can be readily detected with the standard TRITC or Cy3 filter set. iFluor® dyes have higher fluorescence intensity, increased photostability, and enhanced water solubility, resulting in fluorescence signals with significantly higher precision and sensitivity. iFluor® 568 is an excellent replacement for Alexa Fluor® 568 tyramide (Alexa Fluor® is the trademark of ThermoFisher) or other comparable fluorescent tyramide conjugates.

Example protocol

AT A GLANCE

Protocol Summary
  1. Fix/permeabilize/block cells or tissue
  2. Add primary antibody in blocking buffer
  3. Add HRP-conjugated secondary antibody
  4. Prepare tyramide working solution and apply in cells or tissue for 5-10 minutes at room temperature

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

Tyramide stock solution (200X)

Add 100 µL of DMSO to the vial of iFluor® tyramide and mix well.

Note: Make single-use aliquots and store unused 200X stock solution at 2-8 °C, protected from light. Avoid repeat freeze-thaw cycles. 

PREPARATION OF WORKING SOLUTION

Tyramide working solution (1X)

Add 100 µL of the tyramide stock solution into 20 mL of a buffer of your choice containing 0.003% H2O2.

Note: For optimal performance, use Tris Buffer, pH=7.4.

Note: A 20 mL solution is good for 200 tests. The tyramide working solution should be used immediately and made fresh on the day of use. Avoid direct exposure to light.

Secondary antibody-HRP working solution

Make an appropriate concentration of secondary antibody-HRP working solution per the manufacturer's recommendations. 

SAMPLE EXPERIMENTAL PROTOCOL

This protocol is applicable for both cells and tissues staining.

Cell fixation and permeabilization
  1. Fix the cells or tissue with 3.7% formaldehyde or paraformaldehyde, in PBS at room temperature for 20 minutes.
  2. Rinse the cells or tissue with PBS twice.
  3. Permeabilize the cells with 0.1% Triton X-100 solution for 1-5 minutes at room temperature.
  4. Rinse the cells or tissue with PBS twice.
Tissue fixation, deparaffinization and rehydration

Deparaffinize and dehydrate the tissue according to the standard IHC protocols. Perform antigen retrieval with the preferred specific solution/protocol as needed. A protocol can be found at:

https://www.aatbio.com/resources/guides/paraffin-embedded-tissue-immunohistochemistry-protocol.html

Peroxidase labeling
  1. Optional: Quench endogenous peroxidase activity by incubating cell or tissue sample in peroxidase quenching solution (such as 3% hydrogen peroxide) for 10 minutes. Rinse with PBS twice at room temperature.
  2. Optional: If using HRP-conjugated streptavidin, it is advisable to block endogenous biotins by biotin blocking buffer.
  3. Block with preferred blocking solution (such as PBS with 1% BSA) for 30 minutes at 4 °C.
  4. Remove blocking solution and add primary antibody diluted in recommended antibody diluent for 60 minutes at room temperature or overnight at 4 °C.
  5. Wash with PBS three times for 5 minutes each.
  6. Apply 100 µL of secondary antibody-HRP working solution to each sample and incubate for 60 minutes at room temperature.

    Note: Incubation time and concentration can be varied depending on the signal intensity.

  7. Wash with PBS three times for 5 minutes each.
Tyramide labeling
  1. Prepare and apply 100 µL of Tyramide working solution to each sample and incubate for 5-10 minutes at room temperature.

    Note: If you observe a non-specific signal, you can shorten the incubation time with the tyramide reagent. You should optimize the incubation period using positive and negative control samples at various incubation time points. Or you can use a lower concentration of the tyramide reagent in the working solution.

  2. Rinse with PBS three times.
Counterstain and fluorescence imaging
  1. Counterstain the cell or tissue samples as needed. AAT provides a series of nucleus counterstain reagents as listed in Table 1. Follow the instruction provided with the reagents.
  2. Mount the coverslip using a mounting medium with anti-fading properties.

    Note: To ensure optimal results, it is recommended to use either ReadiUse™ microscope mounting solution (Cat. 20009) or FluoroQuest™ TSA/PSA Antifade Mounting Medium *Optimized for Tyramide and Styramide Imaging* (Cat. 44890) instead of Vectashield® mounting media. There are instances where Vectashield® mounting media may not be suitable for certain TSA/PSA conjugates.

  3. Use the appropriate filter set to visualize the signal from the Tyramide labeling.

Table 1. Products recommended for nucleus counterstain

Cat#Product NameEx/Em (nm)
17548Nuclear Blue™ DCS1350/461
17550Nuclear Green™ DCS1503/526
17551Nuclear Orange™ DCS1528/576
17552Nuclear Red™ DCS1642/660

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
iFluor® 488 tyramide4915167500010.910.210.11
iFluor® 568 maleimide56858710000010.5710.340.15
iFluor® 568 Styramide *Superior Replacement for Alexa Fluor 568 tyramide*56858710000010.5710.340.15
iFluor® 555 Tyramide55757010000010.6410.230.14
iFluor® 647 Tyramide65667025000010.2510.030.03
iFluor® 350 Tyramide3454502000010.9510.830.23
iFluor® 546 Tyramide54155710000010.6710.250.15
iFluor® 594 Tyramide58760320000010.5310.050.04
iFluor® 633 tyramide64065425000010.2910.0620.044
iFluor® 430 Tyramide *Superior Replacement for Opal 480*4334984000010.7810.680.3
iFluor® 450 Tyramide *Superior Replacement for Opal 480*4515024000010.8210.450.27
iFluor® 680 Tyramide *Superior Replacement for Opal 690*68470122000010.2310.0970.094
Show More (3)

References

View all 50 references: Citation Explorer
Microwaving and Fluorophore-Tyramide for Multiplex Immunostaining on Mouse Adrenals - Using Unconjugated Primary Antibodies from the Same Host Species.
Authors: Lyu, Qiongxia and Zheng, Huifei Sophia and Laprocina, Karly and Huang, Chen-Che Jeff
Journal: Journal of visualized experiments : JoVE (2020)
Detection of Cytokine Receptors Using Tyramide Signal Amplification for Immunofluorescence.
Authors: Wang, Herui and Pangilinan, Ryan L and Zhu, Yan
Journal: Methods in molecular biology (Clifton, N.J.) (2020): 89-97
Procedural Requirements and Recommendations for Multiplex Immunofluorescence Tyramide Signal Amplification Assays to Support Translational Oncology Studies.
Authors: Parra, Edwin Roger and Jiang, Mei and Solis, Luisa and Mino, Barbara and Laberiano, Caddie and Hernandez, Sharia and Gite, Swati and Verma, Anuj and Tetzlaff, Michael and Haymaker, Cara and Tamegnon, Auriole and Rodriguez-Canales, Jaime and Hoyd, Clifford and Bernachez, Chantale and Wistuba, Ignacio
Journal: Cancers (2020)
Sensitive Multiplexed Fluorescent In Situ Hybridization Using Enhanced Tyramide Signal Amplification and Its Combination with Immunofluorescent Protein Visualization in Zebrafish.
Authors: Lauter, Gilbert and Söll, Iris and Hauptmann, Giselbert
Journal: Methods in molecular biology (Clifton, N.J.) (2020): 397-409
Optimization of prostate cancer cell detection using multiplex tyramide signal amplification.
Authors: Roy, Sounak and Axelrod, Haley D and Valkenburg, Kenneth C and Amend, Sarah and Pienta, Kenneth J
Journal: Journal of cellular biochemistry (2019): 4804-4812
Page updated on November 23, 2024

Ordering information

Price
Unit size
Catalog Number45106
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

1195.55

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.34

Correction Factor (280 nm)

0.15

Extinction coefficient (cm -1 M -1)

1000001

Excitation (nm)

568

Emission (nm)

587

Quantum yield

0.571

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501

Platform

Fluorescence microscope

ExcitationCy3, TRITC filter set
EmissionCy3, TRITC filter set
Recommended plateBlack wall, clear bottom
Microtubules of fixed HeLa cells were labeled with anti-α tubulin mouse mAb followed by HRP-labeled goat anti-mouse IgG (Cat No. 16728). The fluorescence signal was developed using Alexa Fluor® 568 tyramide or iFluor® 568 tyramide (Cat No. 45106) and detected with a TRITC/Cy3 filter set. iFluor® 568 tyramide shows significantly higher fluorescence intensity than Alexa Fluor® 568 tyramide under the same conditions.
Microtubules of fixed HeLa cells were labeled with anti-α tubulin mouse mAb followed by HRP-labeled goat anti-mouse IgG (Cat No. 16728). The fluorescence signal was developed using Alexa Fluor® 568 tyramide or iFluor® 568 tyramide (Cat No. 45106) and detected with a TRITC/Cy3 filter set. iFluor® 568 tyramide shows significantly higher fluorescence intensity than Alexa Fluor® 568 tyramide under the same conditions.
Microtubules of fixed HeLa cells were labeled with anti-α tubulin mouse mAb followed by HRP-labeled goat anti-mouse IgG (Cat No. 16728). The fluorescence signal was developed using Alexa Fluor® 568 tyramide or iFluor® 568 tyramide (Cat No. 45106) and detected with a TRITC/Cy3 filter set. iFluor® 568 tyramide shows significantly higher fluorescence intensity than Alexa Fluor® 568 tyramide under the same conditions.
Formalin-fixed, paraffin-embedded (FFPE) human lung tissue was labeled with anti-EpCAM mouse mAb followed by HRP-labeled goat anti-mouse IgG (Cat No. 16728). The fluorescence signal was developed using iFluor® 568 tyramide (Cat No.  45106) or Alexa Fluor® 568 tyramide and detected with a TRITC/Cy3 filter set. Nuclei (blue) were counterstained with DAPI (Cat No. 17507).
Gallery Image 3