logo
AAT Bioquest

Mag-Fura-2, AM *Cell-permeant*

Mag-Fura-2, AM is an intracellular magnesium indicator that is ratiometric and UV light-excitable. It has the spectral properties that closely match Fura-2. This acetoxymethyl (AM) ester form is useful for noninvasive intracellular loading. It is also used for measuring high level of calcium ion in live cells.

Example protocol

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

Mag-Fura-2 AM Stock Solution
  1. Prepare a 2 to 5 mM stock solution of Mag-Fura-2 AM in high-quality, anhydrous DMSO.

PREPARATION OF WORKING SOLUTION

Mag-Fura-2 AM Working Solution
  1. On the day of the experiment, either dissolve Mag-Fura-2 AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature.

  2. Prepare a 2 to 20 µM Mag-Fura-2 AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Mag-Fura-2 AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.

    Note: The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Mag-Fura-2 AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.

    Note: If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of ReadiUse™ Probenecid products, including water-soluble, sodium salt, and stabilized solutions, can be purchased from AAT Bioquest.

SAMPLE EXPERIMENTAL PROTOCOL

Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.

  1. Prepare cells in growth medium overnight.
  2. On the next day, add 1X Mag-Fura-2 AM working solution to your cell plate.

    Note: If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.

  3. Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.

    Note: Incubating the dye for longer than 1 hour can improve signal intensities in certain cell lines.

  4. Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
  5. Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a Fura 2 filter set or a fluorescence plate reader containing a programmable liquid handling system such as a FlexStation, at Ex/Em1 = 340/510 nm cutoff 475 nm and Ex/Em2 = 380/510 nm cutoff 475 nm.

Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Mag-Fura-2, AM *Cell-permeant* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM138.397 µL691.984 µL1.384 mL6.92 mL13.84 mL
5 mM27.679 µL138.397 µL276.794 µL1.384 mL2.768 mL
10 mM13.84 µL69.198 µL138.397 µL691.984 µL1.384 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum

References

View all 15 references: Citation Explorer
Tuning the Spectroscopic Properties of Ratiometric Fluorescent Metal Indicators: Experimental and Computational Studies on Mag-Fura-2 and Analogues
Authors: Zhang G, Jacquemin D, Buccella D.
Journal: J Phys Chem B. (2017)
Fluorescence measurements of free [Mg2+] by use of mag-fura 2 in Salmonella enterica
Authors: Froschauer EM, Kolisek M, Dieterich F, Schweigel M, Schweyen RJ.
Journal: FEMS Microbiol Lett (2004): 49
Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC
Authors: Hyrc KL, Bownik JM, Goldberg MP.
Journal: Cell Calcium (2000): 75
Mag-Fura-2 (Furaptra) exhibits both low (microM) and high (nM) affinity for Ca2+
Authors: Martinez-Zaguilan R, Parnami J, Martinez GM.
Journal: Cell Physiol Biochem (1998): 158
Intracellular Mg2+ regulation in voltage-clamped Helix aspersa neurones measured with mag-fura-2 and Mg(2+)-sensitive microelectrodes
Authors: Kennedy HJ., undefined
Journal: Exp Physiol (1998): 449
Page updated on November 23, 2024

Ordering information

Price
Unit size
Catalog Number20383
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

722.56

Solvent

DMSO

Spectral properties

Excitation (nm)

336

Emission (nm)

505

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200

CAS

130100-20-8

Platform

Fluorescence microscope

ExcitationFura 2 filter set
EmissionFura 2 filter set
Recommended plateBlack wall, clear bottom

Fluorescence microplate reader

Excitation340, 380
Emission510
Cutoff475
Recommended plateBlack wall, clear bottom
Instrument specification(s)Bottom read mode, Programmable liquid handling
Product Image
Product Image
Gallery Image 1